Abstract
Although there is known to be a marked concentration of reactive microglia in the substantia nigra pars compacta (SNpc) of patients with Parkinson's disease (PD), a disorder in which α-synuclein plays a key pathogenic role, the specific roles of α-synuclein and microglia remains poorly understood. In this study, we investigated the effects of α-synuclein and the mechanisms of invasive microglial migration into the SNpc. We show that α-synuclein up-regulates the expressions of the cell adhesion molecule CD44 and the cell surface protease membrane-type 1 matrix metalloproteinase through the extracellular regulated kinases 1/2 pathway. These concurrent inductions increased the generation of soluble CD44 to liberate microglia from the surrounding extracellular matrix for migration. The effects of α-synuclein were identical in BV-2 murine microglial cells subjected to cDNA transfection and extracellular treatment. These inductions in primary microglial cultures of C57Bl/6 mice were identical to those in BV-2 cells. α-Synuclein-induced microglial migration into the SNpc was confirmed in vivo using a 6-hydroxydopamine mouse model of PD. Our data demonstrate a correlation between α-synuclein-induced phenotypic changes and microglial migration. With the recruitment of the microglial population into the SNpc during dopaminergic neurodegeneration, α-synuclein may play a role in accelerating the pathogenesis of PD.
Original language | English |
---|---|
Pages (from-to) | 1483-1496 |
Number of pages | 14 |
Journal | Journal of Neurochemistry |
Volume | 109 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2009 Jun |
Externally published | Yes |
Keywords
- CD44
- Membrane-type 1 matrix metalloproteinase
- Microglia
- Migration
- α-synuclein
ASJC Scopus subject areas
- Biochemistry
- Cellular and Molecular Neuroscience