Abstract
Vertical rectifiers fabricated on epi Ga2O3 on bulk β-Ga2O3 were subject to 1.5 MeV electron irradiation at fluences from 1.79 × 1015 to 1.43 × 1016 cm−2 at a fixed beam current of 10−3 A. The electron irradiation caused a reduction in carrier concentration in the epi Ga2O3, with a carrier removal rate of 4.9 cm−1. The 2 kT region of the forward current-voltage characteristics increased due to electron-induced damage, with an increase in diode ideality factor of ∼8% at the highest fluence and a more than 2 order of magnitude increase in on-state resistance. There was a significant reduction in reverse bias current, which scaled with electron fluence. The on/off ratio at −10 V reverse bias voltage was severely degraded by electron irradiation, decreasing from ∼107 in the reference diodes to ∼2 × 104 for the 1.43 × 1016cm−2 fluence. The reverse recovery characteristics showed little change even at the highest fluence, with values in the range of 21-25 ns for all rectifiers.
Original language | English |
---|---|
Article number | 031208 |
Journal | Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics |
Volume | 35 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2017 May 1 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering
- Materials Chemistry