TY - GEN
T1 - 7T-guided learning framework for improving the segmentation of 3T MR images
AU - Bahrami, Khosro
AU - Rekik, Islem
AU - Shi, Feng
AU - Gao, Yaozong
AU - Shen, Dinggang
N1 - Publisher Copyright:
© Springer International Publishing AG 2016.
PY - 2016
Y1 - 2016
N2 - The emerging era of ultra-high-field MRI using 7T MRI scanners dramatically improved sensitivity,image resolution,and tissue contrast when compared to 3T MRI scanners in examining various anatomical structures. The advantages of these high-resolution MR images include higher segmentation accuracy of MRI brain tissues. However,currently,accessibility to 7T MRI scanners remains much more limited than 3T MRI scanners due to technological and economical constraints. Hence,we propose in this work the first learning-based model that improves the segmentation of an input 3T MR image with any conventional segmentation method,through the reconstruction of a higherquality 7T-like MR image,without actually acquiring an ultra-high-field 7T MRI. Our proposed framework comprises two main steps. First,we estimate a non-linear mapping from 3T MRI to 7T MRI space,using random forest regression model with novel weighting and ensembling schemes,to reconstruct initial 7T-like MR images. Second,we use a group sparse representation with a new pre-selection approach to further refine the 7T-like MR image reconstruction. We evaluated our 7T MRI reconstruction results along with their segmentation results using 13 subjects acquired with both 3T and 7T MR images. For tissue segmentation,we applied two widely used segmentation methods (FAST and SPM) to perform the experiments. Our results showed (1) the improvement of WM,GM and CSF brain tissues segmentation results when guided by reconstructed 7T-like images compared to 3T MR images,and (2) the outperformance of the proposed 7T MRI reconstruction method when compared to other state-of-the-art methods.
AB - The emerging era of ultra-high-field MRI using 7T MRI scanners dramatically improved sensitivity,image resolution,and tissue contrast when compared to 3T MRI scanners in examining various anatomical structures. The advantages of these high-resolution MR images include higher segmentation accuracy of MRI brain tissues. However,currently,accessibility to 7T MRI scanners remains much more limited than 3T MRI scanners due to technological and economical constraints. Hence,we propose in this work the first learning-based model that improves the segmentation of an input 3T MR image with any conventional segmentation method,through the reconstruction of a higherquality 7T-like MR image,without actually acquiring an ultra-high-field 7T MRI. Our proposed framework comprises two main steps. First,we estimate a non-linear mapping from 3T MRI to 7T MRI space,using random forest regression model with novel weighting and ensembling schemes,to reconstruct initial 7T-like MR images. Second,we use a group sparse representation with a new pre-selection approach to further refine the 7T-like MR image reconstruction. We evaluated our 7T MRI reconstruction results along with their segmentation results using 13 subjects acquired with both 3T and 7T MR images. For tissue segmentation,we applied two widely used segmentation methods (FAST and SPM) to perform the experiments. Our results showed (1) the improvement of WM,GM and CSF brain tissues segmentation results when guided by reconstructed 7T-like images compared to 3T MR images,and (2) the outperformance of the proposed 7T MRI reconstruction method when compared to other state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=84996549786&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-46723-8_66
DO - 10.1007/978-3-319-46723-8_66
M3 - Conference contribution
AN - SCOPUS:84996549786
SN - 9783319467221
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 572
EP - 580
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference, Proceedings
A2 - Unal, Gozde
A2 - Ourselin, Sebastian
A2 - Joskowicz, Leo
A2 - Sabuncu, Mert R.
A2 - Wells, William
PB - Springer Verlag
ER -