8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification

Ja Young Hahm, Jongyeun Park, Eun Sook Jang, Sung Wook Chi

Research output: Contribution to journalReview articlepeer-review

1 Citation (Scopus)

Abstract

In pathophysiology, reactive oxygen species control diverse cellular phenotypes by oxidizing biomolecules. Among these, the guanine base in nucleic acids is the most vulnerable to producing 8-oxoguanine, which can pair with adenine. Because of this feature, 8-oxoguanine in DNA (8-oxo-dG) induces a G > T (C > A) mutation in cancers, which can be deleterious and thus actively repaired by DNA repair pathways. 8-Oxoguanine in RNA (o8G) causes problems in aberrant quality and translational fidelity, thereby it is subjected to the RNA decay pathway. In addition to oxidative damage, 8-oxo-dG serves as an epigenetic modification that affects transcriptional regulatory elements and other epigenetic modifications. With the ability of o8G•A in base pairing, o8G alters structural and functional RNA–RNA interactions, enabling redirection of posttranscriptional regulation. Here, we address the production, regulation, and function of 8-oxo-dG and o8G under oxidative stress. Primarily, we focus on the epigenetic and epitranscriptional roles of 8-oxoguanine, which highlights the significance of oxidative modification in redox-mediated control of gene expression.

Original languageEnglish
Pages (from-to)1626-1642
Number of pages17
JournalExperimental and Molecular Medicine
Volume54
Issue number10
DOIs
Publication statusPublished - 2022 Oct

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Clinical Biochemistry

Fingerprint

Dive into the research topics of '8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification'. Together they form a unique fingerprint.

Cite this