TY - GEN
T1 - A Charge-Sharing based 8T SRAM In-Memory Computing for Edge DNN Acceleration
AU - Lee, Kyeongho
AU - Cheon, Sungsoo
AU - Jo, Joongho
AU - Choi, Woong
AU - Park, Jongsun
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/12/5
Y1 - 2021/12/5
N2 - This paper presents a charge-sharing based customized 8T SRAM in-memory computing (IMC) architecture. In the proposed IMC approach, the multiply-accumulate (MAC) operation of multi-bit activations and weights is supported using the charge sharing between bit-line (BL) parasitic capacitances. The area-efficient customized 8T SRAM macro can achieve robust and voltage-scalable MAC operations due to the charge-domain computation. We also propose a split capacitor structure-based 5/6-bit reconfigurable successive approximation register analog-to-digital converter (SAR-ADC) to reduce the hardware cost of an analog readout circuit while supporting higher precision MAC operations. The proposed reconfigurable SAR-ADC has been exploited to implement layer-by-layer mixed bit-precisions in convolution layer for increasing energy efficiency with negligible accuracy loss. The 256×64 8T SRAM IMC macro has been implemented using 28nm CMOS process technology. The proposed SRAM macro achieves 11. 20-TOPS/W with a maximum clock frequency of 125MHz at 1. 0V. It also supports supply voltage scaling from 0.5V to 1.1V with the energy efficiency ranging from 8.3-TOPS/W to 35.4-TOPS/W within 1 % accuracy loss.
AB - This paper presents a charge-sharing based customized 8T SRAM in-memory computing (IMC) architecture. In the proposed IMC approach, the multiply-accumulate (MAC) operation of multi-bit activations and weights is supported using the charge sharing between bit-line (BL) parasitic capacitances. The area-efficient customized 8T SRAM macro can achieve robust and voltage-scalable MAC operations due to the charge-domain computation. We also propose a split capacitor structure-based 5/6-bit reconfigurable successive approximation register analog-to-digital converter (SAR-ADC) to reduce the hardware cost of an analog readout circuit while supporting higher precision MAC operations. The proposed reconfigurable SAR-ADC has been exploited to implement layer-by-layer mixed bit-precisions in convolution layer for increasing energy efficiency with negligible accuracy loss. The 256×64 8T SRAM IMC macro has been implemented using 28nm CMOS process technology. The proposed SRAM macro achieves 11. 20-TOPS/W with a maximum clock frequency of 125MHz at 1. 0V. It also supports supply voltage scaling from 0.5V to 1.1V with the energy efficiency ranging from 8.3-TOPS/W to 35.4-TOPS/W within 1 % accuracy loss.
KW - In-memory computing (IMC)
KW - bit reconfigurable SAR-ADC
KW - charge domain compute
KW - compute-in-memory (CIM)
UR - http://www.scopus.com/inward/record.url?scp=85119425447&partnerID=8YFLogxK
U2 - 10.1109/DAC18074.2021.9586103
DO - 10.1109/DAC18074.2021.9586103
M3 - Conference contribution
AN - SCOPUS:85119425447
T3 - Proceedings - Design Automation Conference
SP - 739
EP - 744
BT - 2021 58th ACM/IEEE Design Automation Conference, DAC 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 58th ACM/IEEE Design Automation Conference, DAC 2021
Y2 - 5 December 2021 through 9 December 2021
ER -