TY - JOUR
T1 - A decentralized spectrum allocation and partitioning scheme for a two-tier macrofemtocell network with downlink beamforming
AU - Ryoo, Sunheui
AU - Joo, Changhee
AU - Bahk, Saewoong
N1 - Funding Information:
This study was supported in part by the NRF (National Research Foundation of Korea) grant funded by the Korea government (MEST) (No. 2011-0027517), in part by the MKE (The Ministry of Knowledge Economy), Korea, under the Convergence-ITRC (Convergence Information Technology Research Center) support program (NIPA-2012-H0401-12-1004) supervised by the NIPA (National IT Industry Promotion Agency) and in part by the research programs through National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology (No. 2011-0027517 and No. 2011-0008549).
PY - 2012
Y1 - 2012
N2 - This article examines spectrum allocation and partitioning schemes to mitigate cross-tier interference under downlink beamforming environments. The enhanced SIR owing to beamforming allows more femtocells to share their spectrum with the macrocell and accordingly improves overall spectrum efficiency. We first design a simplified centralized scheme as the optimum and then propose a practical decentralized algorithm that determines which femtocells to use the full or partitioned spectrum with acceptable control overhead. To exploit limited information of the received signal strength efficiently, we consider two types of probabilistic femtocell base station (HeNB) selection policies. They are equal selection and interference weighted selection policies, and we drive their outage probabilities for a macrocell user. Through performance evaluation, we demonstrate that the outage probability and the cell capacity in our decentralized scheme are significantly better than those in a conventional cochannel deployment scheme. Furthermore, we show that the cell utility in our proposed scheme is close to that in the centralized scheme and better than that in the spectrum partitioning scheme with a fixed ratio.
AB - This article examines spectrum allocation and partitioning schemes to mitigate cross-tier interference under downlink beamforming environments. The enhanced SIR owing to beamforming allows more femtocells to share their spectrum with the macrocell and accordingly improves overall spectrum efficiency. We first design a simplified centralized scheme as the optimum and then propose a practical decentralized algorithm that determines which femtocells to use the full or partitioned spectrum with acceptable control overhead. To exploit limited information of the received signal strength efficiently, we consider two types of probabilistic femtocell base station (HeNB) selection policies. They are equal selection and interference weighted selection policies, and we drive their outage probabilities for a macrocell user. Through performance evaluation, we demonstrate that the outage probability and the cell capacity in our decentralized scheme are significantly better than those in a conventional cochannel deployment scheme. Furthermore, we show that the cell utility in our proposed scheme is close to that in the centralized scheme and better than that in the spectrum partitioning scheme with a fixed ratio.
UR - http://www.scopus.com/inward/record.url?scp=84872844532&partnerID=8YFLogxK
U2 - 10.1186/1687-1499-2012-160
DO - 10.1186/1687-1499-2012-160
M3 - Article
AN - SCOPUS:84872844532
SN - 1687-1472
VL - 2012
JO - Eurasip Journal on Wireless Communications and Networking
JF - Eurasip Journal on Wireless Communications and Networking
M1 - 160
ER -