@article{c1990fe2ff7744a49c7816e28b1360aa,
title = "A generalized rule for large piezoelectric response in perovskite oxide ceramics and its application for design of lead-free compositions",
abstract = "We present a general rule for the perovskite oxide ceramics: {"}A large piezoelectric constant in AB O3 perovskite ceramics can be obtained by tuning the weight ratio of A and B sites, WA/WB or W B/WA to 3. Piezoelectric constant decreases significantly when WA/WB or WB/WA is in the range of 0.5-2.0, termed as forbidden zone.{"} A comparative analysis was conducted for broad range of materials demonstrating the applicability of proposed rule. Further based on this rule optimized compositions in BaTiO3 and alkali niobate based systems were developed. Polycrystalline ceramics in modified BaTiO3 system were found to exhibit longitudinal piezoelectric coefficient (d33) of 330 pC/N, while alkali niobate ceramics showed d33 of 294 pC/N.",
author = "Ahn, {Cheol Woo} and Deepam Maurya and Park, {Chee Sung} and Sahn Nahm and Shashank Priya",
note = "Funding Information: The authors gratefully acknowledge financial support from Office of Basic Energy Sciences, Department of Energy (Contract No. DE-FG02-07ER46480); DMR, National Science Foundation (Materials World Network Program); and the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea. The authors would also like to thank NCFL, VT for their help in characterization. Table I. R W (or 1 / R W ), F t , and d 33 in perovskite piezoelectric ceramics. Mark Abbreviation Composition 1 / R W F t d 33 (pC/N) KNN a ( K , Na ) NbO 3 2.99 1.01 97 T1 KNN-BT b ( K 0.5 Na 0.5 ) NbO 3 − BaTiO 3 2.49 1.01 225 T2 KNN-ST c ( K 0.5 Na 0.5 ) NbO 3 − SrTiO 3 2.68 1.01 220 T3 KNN-CT d ( K 0.5 Na 0.5 ) NbO 3 − CaTiO 3 2.88 1.01 241 L1 KNN-LN e ( K 0.48 Na 0.535 ) NbO 3 − LiNbO 3 3.13 1.00 314 L2 KNN-LS f ( K 0.5 Na 0.5 ) NbO 3 − LiSbO 3 3.17 1.00 286 L3 KNN-LNTS g ( K 0.44 Na 0.52 Li 0.04 ) ( Nb 0.86 Ta 0.10 Sb 0.04 ) O 3 3.49 1.00 308 L4 KNLNS-BT 0.99 ( K 0.48 Na 0.48 Li 0.04 ) ( Nb 0.98 Sb 0.02 ) O 3 − 0.01 BaTiO 3 2.99 1.00 294 Mark Abbreviation Composition R W F t d 33 (pC/N) PT h PbTiO 3 4.33 1.02 51 PZT i Pb ( Zr , Ti ) O 3 2.94 0.99 223 P1 Na-doped PZT j ( Na , Pb ) ( Zr , Ti ) O 3 2.55 0.99 157 P2 La, Li, Na, and K-doped PZT k ( La , Li , Na , K , Pb ) ( Zr , Ti ) O 3 2.65 0.98 200 P3 La-doped PZT k ( La , Pb ) ( Zr , Ti ) O 3 2.70 0.99 406 P4 La, Ba, Sr, and Nb-doped PZT k ( La , Ba , Sr , Pb ) ( Zr , Ti , Nb ) O 3 2.77 0.99 538 PZT-PZN l 0.6 Pb ( Zr 0.48 Ti 0.52 ) O 3 − 0.4 Pb ( Zn 1 / 3 Nb 2 / 3 ) O 3 2.74 0.99 460 P5 PZT-PNN m 0.59 Pb ( Zr 0.39 Ti 0.61 ) O 3 − 0.41 Pb ( Ni 1 / 3 Nb 2 / 3 ) O 3 2.89 1.00 740 P6 PMN-PT i 0.6 Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 − 0.4 PbTiO 3 3.39 1.00 690 BT i BaTiO 3 2.87 1.06 190 BT1 BT-BCuN 0.975 BaTiO 3 − 0.025 Ba ( Cu 1 / 3 Nb 2 / 3 ) O 3 2.82 1.06 330 BCuN Ba ( Cu 1 / 3 Nb 2 / 3 ) O 3 1.65 1.03 0 ST SrTiO 3 1.83 1.00 0 CT CaTiO 3 1.19 0.97 0 BNT n ( Bi 1 / 2 Na 1 / 2 ) TiO 3 2.42 0.99 66 BNKT o ( Bi 1 / 2 Na 1 / 2 ) TiO 3 − ( Bi 1 / 2 K 1 / 2 ) TiO 3 2.46 0.99 151 BNKT-BT o ( Bi 1 / 2 Na 1 / 2 ) TiO 3 − ( Bi 1 / 2 K 1 / 2 ) TiO 3 − BaTiO 3 2.46 1.00 191 BNBT-KNN p ( Bi 1 / 2 Na 1 / 2 ) TiO 3 − BaTiO 3 − ( K 0.5 Na 0.5 ) NbO 3 2.24 0.99 140 a Reference 10 . b References 3 and 6 . c Reference 5 . d Reference 12 . e References 10 and 19 . f References 14 and 20 . g References 1 and 11 . h Reference 21 . i Reference 22 . j Reference 23 . k Reference 24 . l Reference 25 . m Reference 26 . n Reference 27 . o Reference 28 . p Reference 29 . FIG. 1. Variation of d 33 as a function of R W or 1 / R W in perovskite piezoelectric ceramics: (a) MPB compositions in PZT and BNT based compositions, two-phase-polymorphic compositions in KNN and BT based ceramics, and pure perovskite ceramics; (b) various compositions in perovskite piezoelectric ceramics; (c) A -site heavy region; (d) B -site heavy region; (e) merged graph of (c) and (d) (Refs. 1–15 and 18–29 ). Abbreviations are indicated in Table I . FIG. 2. (a) XRD patterns and (b) dielectric constant as a function of temperature for ( 1 − x ) BT − x BCuN and 0.99 KNLN 1 − x S x − 0.01 BT ceramics. FIG. 3. SEM images of BT1 and L4 ceramics sintered at 1350 and 1080 ° C for 2 h, respectively. ",
year = "2009",
doi = "10.1063/1.3142442",
language = "English",
volume = "105",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "11",
}