A Hybrid Multi-Objective Optimizer-Based SVM Model for Enhancing NumericalWeather Prediction: A Study for the Seoul Metropolitan Area

Mohanad A. Deif, Ahmed A.A. Solyman, Mohammed H. Alsharif, Seungwon Jung, Eenjun Hwang

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Temperature forecasting is an area of ongoing research because of its importance in all life aspects. However, because a variety of climate factors controls the temperature, it is a never-ending challenge. The numerical weather prediction (NWP) model has been frequently used to forecast air temperature. However, because of its deprived grid resolution and lack of parameterizations, it has systematic distortions. In this study, a gray wolf optimizer (GWO) and a support vector machine (SVM) are used to ensure accuracy and stability of the next day forecasting for minimum and maximum air temperatures in Seoul, South Korea, depending on local data assimilation and prediction system (LDAPS, a model of local NWP over Korea). A total of 14 LDAPS models forecast data, the daily maximum and minimum air temperatures of in situ observations, and five auxiliary data were used as input variables. The LDAPS model, the multimodal array (MME), the particle swarm optimizer with support vector machine (SVM-PSO), and the conventional SVM were selected as comparison models in this study to illustrate the advantages of the proposed model. When compared to the particle swarm optimizer and traditional SVM, the Gray Wolf Optimizer produced more accurate results, with the average RMSE value of SVM for T max and T min Forecast prediction reduced by roughly 51 percent when combined with GWO and 31 percent when combined with PSO. In addition, the hybrid model (SVM-GWO) improved the performance of the LDAPS model by lowering the RMSE values for T max Forecast and T min Forecast forecasting from 2.09 to 0.95 and 1.43 to 0.82, respectively. The results show that the proposed hybrid (GWO-SVM) models outperform benchmark models in terms of prediction accuracy and stability and that the suggested model has a lot of application potentials.

Original languageEnglish
Article number296
JournalSustainability (Switzerland)
Volume14
Issue number1
DOIs
Publication statusPublished - 2022 Jan 1

Keywords

  • Gray wolf optimizer (GWO)
  • Numerical weather prediction (NWP) model
  • Support vector machine (SVM)
  • Temperature forecasting

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'A Hybrid Multi-Objective Optimizer-Based SVM Model for Enhancing NumericalWeather Prediction: A Study for the Seoul Metropolitan Area'. Together they form a unique fingerprint.

Cite this