A methodology for analyzing the variability in the performance of a MEMS actuator made from a novel ceramic

Jun g Sik Kong, D. M. Frangopol, M. Raulli, K. Maute, R. A. Saravanan, L. A. Liew, R. Raj

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

The performance of a microelectromechanical system can vary because manufacturing processes may leave substantial uncertainty in the shape and geometry of the device. We address this issue in a quantitative way using an electrostatic actuator as an example. The actuator is constructed from a ceramic manufactured by a novel polymer-based process. The distortion in the shape of the actuator head (which is slightly curved) is characterized. Its performance is compared to results obtained from a high-fidelity finite element (FE) analysis. Next, the validated FE model is used to evaluate the variability in the performance of the actuator. The correlation between manufacturing and performance is used to assess the reliability of the device. The procedure developed in this paper may be used to quantify different kinds of uncertainties in the performance of MEMS devices, for example those arising from variability in material properties and the manufacturing process, or from the stochastic nature of the operating environment.

Original languageEnglish
Pages (from-to)336-344
Number of pages9
JournalSensors and Actuators, A: Physical
Volume116
Issue number2
DOIs
Publication statusPublished - 2004 Oct 15

    Fingerprint

Keywords

  • Electrostatic actuator
  • Finite element analysis
  • Microelectromechanical system
  • Monte Carlo simulation

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Instrumentation

Cite this