TY - JOUR
T1 - A microfluidic approach to water-rock interactions using thin rock sections
T2 - Pb and U sorption onto thin shale and granite sections
AU - Oh, Youn Soo
AU - Jo, Ho Young
AU - Ryu, Ji Hun
AU - Kim, Geon Young
N1 - Funding Information:
This research was supported by the Korean Nuclear Energy R&D program of the Ministry of Science, ICT & Future Planning, Korea ( NRF-2012M2A8A5025579 ). We greatly appreciate Dr. Yongjae Lee at Yonsei University for his help with the μ-XRF analysis.
Publisher Copyright:
© 2016 Elsevier B.V.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/2/15
Y1 - 2017/2/15
N2 - The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl2 solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8 mg/cm2) occurred within 3.5 h (140 PVF), which was 74% of the total Pb removal (13.2 mg/cm2) at the end of testing (14.5 h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266 μg/cm2) than the thin Bt-P section (240 μg/cm2) within 120 h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale.
AB - The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl2 solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8 mg/cm2) occurred within 3.5 h (140 PVF), which was 74% of the total Pb removal (13.2 mg/cm2) at the end of testing (14.5 h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266 μg/cm2) than the thin Bt-P section (240 μg/cm2) within 120 h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale.
KW - Lead
KW - Microfluidics
KW - Sorption
KW - Uranium
KW - Water-rock interaction
UR - http://www.scopus.com/inward/record.url?scp=85002152590&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85002152590&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2016.10.071
DO - 10.1016/j.jhazmat.2016.10.071
M3 - Article
C2 - 27843021
AN - SCOPUS:85002152590
SN - 0304-3894
VL - 324
SP - 373
EP - 381
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
ER -