A novel β-glucosidase from Saccharophagus degradans 2-40T for the efficient hydrolysis of laminarin from brown macroalgae

Dong Hyun Kim, Do Hyoung Kim, Sang Hyun Lee, Kyoung Heon Kim

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Background: Laminarin is a potential biomass feedstock for the production of glucose, which is the most preferable fermentable sugar in many microorganisms by which it can be converted to biofuels and bio-based chemicals. Also, laminarin is a good resource as functional materials because it consists of β-1,3-glucosidic linkages in its backbone and β-1,6-glucosidic linkages in its branches so that its oligosaccharides driven from laminarin have a variety of biological activities. It is industrially important to be able to produce laminarioligosaccharides as well as glucose from laminarin by a single enzyme because the enzyme cost accounts for a large part of bio-based products. In this study, we investigated the industrial applicability of Bgl1B, a unique β-glucosidase from Saccharophagus degradans 2-40T, belonging to the glycoside hydrolase family 1 (GH1) by characterizing its activity of hydrolyzing laminarin under various conditions. Results: Bgl1B was cloned and overexpressed in Escherichia coli from S. degradans 2-40T, and its enzymatic activity was characterized. Similar to most of β-glucosidases in GH1, Bgl1B was able to hydrolyze a variety of disaccharides having different β-linkages, such as laminaribiose, cellobiose, gentiobiose, lactose, and agarobiose, by cleaving β-1,3-, β-1,4-, and β-1,6-glycosidic linkages. However, Bgl1B showed the highest specific activity toward laminaribiose with a β-1,3-glycosidic linkage. In addition, it was able to hydrolyze laminarin, one of the major polysaccharides in brown macroalgae, into glucose with a conversion yield of 75% of theoretical maximum. Bgl1B also showed transglycosylation activity by producing oligosaccharides from laminarin and laminaribiose under a high mass ratio of substrate to enzyme. Furthermore, Bgl1B was found to be psychrophilic, exhibiting relative activity of 59-85% in the low-temperature range of 2-20 °C. Conclusions: Bgl1B can directly hydrolyze laminarin into glucose with a high conversion yield without leaving any oligosaccharides. Bgl1B can exhibit high enzymatic activity in a broad range of low temperatures (2-20 °C), which is advantageous for establishing energy-efficient bioprocesses. In addition, under high substrate to enzyme ratios, Bgl1B can produce high-value laminarioligosaccharides via its transglycosylation activity. These results show that Bgl1B can be an industrially important enzyme for the production of biofuels and bio-based chemicals from brown macroalgae.

Original languageEnglish
Article number64
JournalBiotechnology for Biofuels
Volume11
Issue number1
DOIs
Publication statusPublished - 2018 Mar 14

Fingerprint

Glucosidases
Seaweed
hydrolysis
Hydrolysis
Enzymes
Oligosaccharides
Glucose
enzyme
glucose
Biofuels
biofuel
Glycoside Hydrolases
disaccharide
substrate
Functional materials
Substrates
Polysaccharides
Bioactivity
polysaccharide
Sugars

Keywords

  • Brown macroalgae
  • Laminaribiose
  • Laminarin
  • Transglycosylation
  • β-Glucosidase

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology
  • Renewable Energy, Sustainability and the Environment
  • Energy(all)
  • Management, Monitoring, Policy and Law

Cite this

A novel β-glucosidase from Saccharophagus degradans 2-40T for the efficient hydrolysis of laminarin from brown macroalgae. / Kim, Dong Hyun; Kim, Do Hyoung; Lee, Sang Hyun; Kim, Kyoung Heon.

In: Biotechnology for Biofuels, Vol. 11, No. 1, 64, 14.03.2018.

Research output: Contribution to journalArticle

@article{74eaf00aa00544f9966841553375732c,
title = "A novel β-glucosidase from Saccharophagus degradans 2-40T for the efficient hydrolysis of laminarin from brown macroalgae",
abstract = "Background: Laminarin is a potential biomass feedstock for the production of glucose, which is the most preferable fermentable sugar in many microorganisms by which it can be converted to biofuels and bio-based chemicals. Also, laminarin is a good resource as functional materials because it consists of β-1,3-glucosidic linkages in its backbone and β-1,6-glucosidic linkages in its branches so that its oligosaccharides driven from laminarin have a variety of biological activities. It is industrially important to be able to produce laminarioligosaccharides as well as glucose from laminarin by a single enzyme because the enzyme cost accounts for a large part of bio-based products. In this study, we investigated the industrial applicability of Bgl1B, a unique β-glucosidase from Saccharophagus degradans 2-40T, belonging to the glycoside hydrolase family 1 (GH1) by characterizing its activity of hydrolyzing laminarin under various conditions. Results: Bgl1B was cloned and overexpressed in Escherichia coli from S. degradans 2-40T, and its enzymatic activity was characterized. Similar to most of β-glucosidases in GH1, Bgl1B was able to hydrolyze a variety of disaccharides having different β-linkages, such as laminaribiose, cellobiose, gentiobiose, lactose, and agarobiose, by cleaving β-1,3-, β-1,4-, and β-1,6-glycosidic linkages. However, Bgl1B showed the highest specific activity toward laminaribiose with a β-1,3-glycosidic linkage. In addition, it was able to hydrolyze laminarin, one of the major polysaccharides in brown macroalgae, into glucose with a conversion yield of 75{\%} of theoretical maximum. Bgl1B also showed transglycosylation activity by producing oligosaccharides from laminarin and laminaribiose under a high mass ratio of substrate to enzyme. Furthermore, Bgl1B was found to be psychrophilic, exhibiting relative activity of 59-85{\%} in the low-temperature range of 2-20 °C. Conclusions: Bgl1B can directly hydrolyze laminarin into glucose with a high conversion yield without leaving any oligosaccharides. Bgl1B can exhibit high enzymatic activity in a broad range of low temperatures (2-20 °C), which is advantageous for establishing energy-efficient bioprocesses. In addition, under high substrate to enzyme ratios, Bgl1B can produce high-value laminarioligosaccharides via its transglycosylation activity. These results show that Bgl1B can be an industrially important enzyme for the production of biofuels and bio-based chemicals from brown macroalgae.",
keywords = "Brown macroalgae, Laminaribiose, Laminarin, Transglycosylation, β-Glucosidase",
author = "Kim, {Dong Hyun} and Kim, {Do Hyoung} and Lee, {Sang Hyun} and Kim, {Kyoung Heon}",
year = "2018",
month = "3",
day = "14",
doi = "10.1186/s13068-018-1059-2",
language = "English",
volume = "11",
journal = "Biotechnology for Biofuels",
issn = "1754-6834",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - A novel β-glucosidase from Saccharophagus degradans 2-40T for the efficient hydrolysis of laminarin from brown macroalgae

AU - Kim, Dong Hyun

AU - Kim, Do Hyoung

AU - Lee, Sang Hyun

AU - Kim, Kyoung Heon

PY - 2018/3/14

Y1 - 2018/3/14

N2 - Background: Laminarin is a potential biomass feedstock for the production of glucose, which is the most preferable fermentable sugar in many microorganisms by which it can be converted to biofuels and bio-based chemicals. Also, laminarin is a good resource as functional materials because it consists of β-1,3-glucosidic linkages in its backbone and β-1,6-glucosidic linkages in its branches so that its oligosaccharides driven from laminarin have a variety of biological activities. It is industrially important to be able to produce laminarioligosaccharides as well as glucose from laminarin by a single enzyme because the enzyme cost accounts for a large part of bio-based products. In this study, we investigated the industrial applicability of Bgl1B, a unique β-glucosidase from Saccharophagus degradans 2-40T, belonging to the glycoside hydrolase family 1 (GH1) by characterizing its activity of hydrolyzing laminarin under various conditions. Results: Bgl1B was cloned and overexpressed in Escherichia coli from S. degradans 2-40T, and its enzymatic activity was characterized. Similar to most of β-glucosidases in GH1, Bgl1B was able to hydrolyze a variety of disaccharides having different β-linkages, such as laminaribiose, cellobiose, gentiobiose, lactose, and agarobiose, by cleaving β-1,3-, β-1,4-, and β-1,6-glycosidic linkages. However, Bgl1B showed the highest specific activity toward laminaribiose with a β-1,3-glycosidic linkage. In addition, it was able to hydrolyze laminarin, one of the major polysaccharides in brown macroalgae, into glucose with a conversion yield of 75% of theoretical maximum. Bgl1B also showed transglycosylation activity by producing oligosaccharides from laminarin and laminaribiose under a high mass ratio of substrate to enzyme. Furthermore, Bgl1B was found to be psychrophilic, exhibiting relative activity of 59-85% in the low-temperature range of 2-20 °C. Conclusions: Bgl1B can directly hydrolyze laminarin into glucose with a high conversion yield without leaving any oligosaccharides. Bgl1B can exhibit high enzymatic activity in a broad range of low temperatures (2-20 °C), which is advantageous for establishing energy-efficient bioprocesses. In addition, under high substrate to enzyme ratios, Bgl1B can produce high-value laminarioligosaccharides via its transglycosylation activity. These results show that Bgl1B can be an industrially important enzyme for the production of biofuels and bio-based chemicals from brown macroalgae.

AB - Background: Laminarin is a potential biomass feedstock for the production of glucose, which is the most preferable fermentable sugar in many microorganisms by which it can be converted to biofuels and bio-based chemicals. Also, laminarin is a good resource as functional materials because it consists of β-1,3-glucosidic linkages in its backbone and β-1,6-glucosidic linkages in its branches so that its oligosaccharides driven from laminarin have a variety of biological activities. It is industrially important to be able to produce laminarioligosaccharides as well as glucose from laminarin by a single enzyme because the enzyme cost accounts for a large part of bio-based products. In this study, we investigated the industrial applicability of Bgl1B, a unique β-glucosidase from Saccharophagus degradans 2-40T, belonging to the glycoside hydrolase family 1 (GH1) by characterizing its activity of hydrolyzing laminarin under various conditions. Results: Bgl1B was cloned and overexpressed in Escherichia coli from S. degradans 2-40T, and its enzymatic activity was characterized. Similar to most of β-glucosidases in GH1, Bgl1B was able to hydrolyze a variety of disaccharides having different β-linkages, such as laminaribiose, cellobiose, gentiobiose, lactose, and agarobiose, by cleaving β-1,3-, β-1,4-, and β-1,6-glycosidic linkages. However, Bgl1B showed the highest specific activity toward laminaribiose with a β-1,3-glycosidic linkage. In addition, it was able to hydrolyze laminarin, one of the major polysaccharides in brown macroalgae, into glucose with a conversion yield of 75% of theoretical maximum. Bgl1B also showed transglycosylation activity by producing oligosaccharides from laminarin and laminaribiose under a high mass ratio of substrate to enzyme. Furthermore, Bgl1B was found to be psychrophilic, exhibiting relative activity of 59-85% in the low-temperature range of 2-20 °C. Conclusions: Bgl1B can directly hydrolyze laminarin into glucose with a high conversion yield without leaving any oligosaccharides. Bgl1B can exhibit high enzymatic activity in a broad range of low temperatures (2-20 °C), which is advantageous for establishing energy-efficient bioprocesses. In addition, under high substrate to enzyme ratios, Bgl1B can produce high-value laminarioligosaccharides via its transglycosylation activity. These results show that Bgl1B can be an industrially important enzyme for the production of biofuels and bio-based chemicals from brown macroalgae.

KW - Brown macroalgae

KW - Laminaribiose

KW - Laminarin

KW - Transglycosylation

KW - β-Glucosidase

UR - http://www.scopus.com/inward/record.url?scp=85044003558&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044003558&partnerID=8YFLogxK

U2 - 10.1186/s13068-018-1059-2

DO - 10.1186/s13068-018-1059-2

M3 - Article

AN - SCOPUS:85044003558

VL - 11

JO - Biotechnology for Biofuels

JF - Biotechnology for Biofuels

SN - 1754-6834

IS - 1

M1 - 64

ER -