A novel deep learning framework on brain functional networks for early MCI diagnosis

Tae Eui Kam, Han Zhang, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

Although alternations of brain functional networks (BFNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) have been considered as promising biomarkers for early Alzheimer’s disease (AD) diagnosis, it is still challenging to perform individualized diagnosis, especially at the very early stage of preclinical stage of AD, i.e., early mild cognitive impairment (eMCI). Recently, convolutional neural networks (CNNs) show powerful ability in computer vision and image analysis applications, but there is still a gap for directly applying CNNs to rs-fMRI-based disease diagnosis. In this paper, we propose a novel multiple-BFN-based 3D CNN framework that can automatically and deeply learn complex, high-level, hierarchical diagnostic features from various independent component analysis-derived BFNs. More importantly, the embedded features of different BFNs could comprehensively support each other towards a more accurate eMCI diagnosis in a unified model. The performance of the proposed method is validated by a large-sample, multisite, rigorously controlled publicly accessible dataset. The proposed framework can also be conveniently and straightforwardly applied to individualized diagnosis of various neurological and psychiatric diseases.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Christos Davatzikos, Gabor Fichtinger, Carlos Alberola-López, Julia A. Schnabel
PublisherSpringer Verlag
Pages293-301
Number of pages9
ISBN (Print)9783030009304
DOIs
Publication statusPublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 2018 Sep 162018 Sep 20

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11072 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period18/9/1618/9/20

Keywords

  • Brain networks
  • Convolutional neural networks
  • Deep learning
  • Diagnosis
  • Independent component analysis
  • Mild cognitive impairment
  • Resting-state functional MRI

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'A novel deep learning framework on brain functional networks for early MCI diagnosis'. Together they form a unique fingerprint.

  • Cite this

    Kam, T. E., Zhang, H., & Shen, D. (2018). A novel deep learning framework on brain functional networks for early MCI diagnosis. In A. F. Frangi, C. Davatzikos, G. Fichtinger, C. Alberola-López, & J. A. Schnabel (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings (pp. 293-301). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11072 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-00931-1_34