A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells

N. Vu-Bac, T. X. Duong, T. Lahmer, P. Areias, R. A. Sauer, H. S. Park, Timon Rabczuk

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Soft, active materials have been widely studied due to their ability to undergo large, complex shape changes in response to both mechanical and non-mechanical external stimuli. However, the vast majority of such studies has focused on investigating the forward problem, i.e. determining the shape changes that result from the applied stimuli. In contrast, very little work has been done to solve the inverse problem, i.e. that of identifying the external loads and stimuli that are needed to generate desired shapes and morphological changes. In this work, we present a new inverse methodology to study residual thermal expansion induced morphological changes in geometric composites made of soft, thin shells. In particular, the method presented in this work aims to determine the prescribed external stimuli needed to reconstruct a specific target shape, with a specific focus and interest in morphological changes from two-dimensional (2D) to three-dimensional (3D) shapes by considering the external stimuli within a thermohyperelastic framework. To do so, we utilize a geometrically exact, rotation-free Kirchhoff–Love shell formulation discretized by NURBS-based shape functions. We show that the proposed method is capable of identifying the stimuli, including cases where thermal expansion induced shape changes involving elastic softening occur in morphing from the initially flat 2D to non-planar 3D shapes. Validation indicates that the reconstructed shapes are in good agreement with the target shape.

Original languageEnglish
Pages (from-to)480-510
Number of pages31
JournalComputer Methods in Applied Mechanics and Engineering
Volume350
DOIs
Publication statusPublished - 2019 Jun 15

Fingerprint

Thermal expansion
thermal expansion
stimuli
Inverse problems
Composite materials
shape functions
softening
methodology
formulations
composite materials

Keywords

  • Coupled thermohyperelastic model
  • Inverse analysis
  • Isogeometric analysis
  • Large shape changes
  • Nonlinear mechanics
  • Soft materials

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Mechanical Engineering
  • Physics and Astronomy(all)
  • Computer Science Applications

Cite this

A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. / Vu-Bac, N.; Duong, T. X.; Lahmer, T.; Areias, P.; Sauer, R. A.; Park, H. S.; Rabczuk, Timon.

In: Computer Methods in Applied Mechanics and Engineering, Vol. 350, 15.06.2019, p. 480-510.

Research output: Contribution to journalArticle

Vu-Bac, N. ; Duong, T. X. ; Lahmer, T. ; Areias, P. ; Sauer, R. A. ; Park, H. S. ; Rabczuk, Timon. / A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. In: Computer Methods in Applied Mechanics and Engineering. 2019 ; Vol. 350. pp. 480-510.
@article{de8cc89647c64af7bbfc9b60a6eaddba,
title = "A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells",
abstract = "Soft, active materials have been widely studied due to their ability to undergo large, complex shape changes in response to both mechanical and non-mechanical external stimuli. However, the vast majority of such studies has focused on investigating the forward problem, i.e. determining the shape changes that result from the applied stimuli. In contrast, very little work has been done to solve the inverse problem, i.e. that of identifying the external loads and stimuli that are needed to generate desired shapes and morphological changes. In this work, we present a new inverse methodology to study residual thermal expansion induced morphological changes in geometric composites made of soft, thin shells. In particular, the method presented in this work aims to determine the prescribed external stimuli needed to reconstruct a specific target shape, with a specific focus and interest in morphological changes from two-dimensional (2D) to three-dimensional (3D) shapes by considering the external stimuli within a thermohyperelastic framework. To do so, we utilize a geometrically exact, rotation-free Kirchhoff–Love shell formulation discretized by NURBS-based shape functions. We show that the proposed method is capable of identifying the stimuli, including cases where thermal expansion induced shape changes involving elastic softening occur in morphing from the initially flat 2D to non-planar 3D shapes. Validation indicates that the reconstructed shapes are in good agreement with the target shape.",
keywords = "Coupled thermohyperelastic model, Inverse analysis, Isogeometric analysis, Large shape changes, Nonlinear mechanics, Soft materials",
author = "N. Vu-Bac and Duong, {T. X.} and T. Lahmer and P. Areias and Sauer, {R. A.} and Park, {H. S.} and Timon Rabczuk",
year = "2019",
month = "6",
day = "15",
doi = "10.1016/j.cma.2019.03.011",
language = "English",
volume = "350",
pages = "480--510",
journal = "Computer Methods in Applied Mechanics and Engineering",
issn = "0045-7825",
publisher = "Elsevier",

}

TY - JOUR

T1 - A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells

AU - Vu-Bac, N.

AU - Duong, T. X.

AU - Lahmer, T.

AU - Areias, P.

AU - Sauer, R. A.

AU - Park, H. S.

AU - Rabczuk, Timon

PY - 2019/6/15

Y1 - 2019/6/15

N2 - Soft, active materials have been widely studied due to their ability to undergo large, complex shape changes in response to both mechanical and non-mechanical external stimuli. However, the vast majority of such studies has focused on investigating the forward problem, i.e. determining the shape changes that result from the applied stimuli. In contrast, very little work has been done to solve the inverse problem, i.e. that of identifying the external loads and stimuli that are needed to generate desired shapes and morphological changes. In this work, we present a new inverse methodology to study residual thermal expansion induced morphological changes in geometric composites made of soft, thin shells. In particular, the method presented in this work aims to determine the prescribed external stimuli needed to reconstruct a specific target shape, with a specific focus and interest in morphological changes from two-dimensional (2D) to three-dimensional (3D) shapes by considering the external stimuli within a thermohyperelastic framework. To do so, we utilize a geometrically exact, rotation-free Kirchhoff–Love shell formulation discretized by NURBS-based shape functions. We show that the proposed method is capable of identifying the stimuli, including cases where thermal expansion induced shape changes involving elastic softening occur in morphing from the initially flat 2D to non-planar 3D shapes. Validation indicates that the reconstructed shapes are in good agreement with the target shape.

AB - Soft, active materials have been widely studied due to their ability to undergo large, complex shape changes in response to both mechanical and non-mechanical external stimuli. However, the vast majority of such studies has focused on investigating the forward problem, i.e. determining the shape changes that result from the applied stimuli. In contrast, very little work has been done to solve the inverse problem, i.e. that of identifying the external loads and stimuli that are needed to generate desired shapes and morphological changes. In this work, we present a new inverse methodology to study residual thermal expansion induced morphological changes in geometric composites made of soft, thin shells. In particular, the method presented in this work aims to determine the prescribed external stimuli needed to reconstruct a specific target shape, with a specific focus and interest in morphological changes from two-dimensional (2D) to three-dimensional (3D) shapes by considering the external stimuli within a thermohyperelastic framework. To do so, we utilize a geometrically exact, rotation-free Kirchhoff–Love shell formulation discretized by NURBS-based shape functions. We show that the proposed method is capable of identifying the stimuli, including cases where thermal expansion induced shape changes involving elastic softening occur in morphing from the initially flat 2D to non-planar 3D shapes. Validation indicates that the reconstructed shapes are in good agreement with the target shape.

KW - Coupled thermohyperelastic model

KW - Inverse analysis

KW - Isogeometric analysis

KW - Large shape changes

KW - Nonlinear mechanics

KW - Soft materials

UR - http://www.scopus.com/inward/record.url?scp=85063437957&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063437957&partnerID=8YFLogxK

U2 - 10.1016/j.cma.2019.03.011

DO - 10.1016/j.cma.2019.03.011

M3 - Article

VL - 350

SP - 480

EP - 510

JO - Computer Methods in Applied Mechanics and Engineering

JF - Computer Methods in Applied Mechanics and Engineering

SN - 0045-7825

ER -