A Rapid and High-Throughput Assay for Light Scattering of SARS-CoV-2 Virion-Sized Particulates via Microfluidic Spray Device Reveals the Protection Performance of Face Masks against Virus Infection

Young Joon Sung, Sojin Song, Sang Jun Sim

Research output: Contribution to journalArticlepeer-review

Abstract

To prevent interhuman transmission of viruses, new mask types─claiming improved filtration─require careful performance characterization. Here, a microfluidic spray device that can effectively simulate droplets emitted during coughing or sneezing was developed to spray droplets containing gold nanoparticles (AuNPs) that mimic SARS-CoV-2 to overcome the shortcomings associated with using biosamples. The light scattered by the AuNPs passing through the mask is successfully analyzed by using an automated scattering light mapping system within a duration of 2 min, thereby enabling high-throughput analysis of the filtering efficiency of various types of commercial masks. The differences in efficiency in terms of same mask type from different manufacturers, double masking, and prolonged usage, which are challenging to analyze with conventional testing systems, can also be assessed. AuNP-mediated mask performance evaluation enables the rapid determination of mask efficiency according to particle size and can contribute to the rapid response to counter new emerging infectious biohazards.

Original languageEnglish
Pages (from-to)6744-6752
Number of pages9
JournalNano Letters
Volume22
Issue number16
DOIs
Publication statusPublished - 2022 Aug 24

Keywords

  • automatic mapping system
  • face masks
  • filtration performance
  • gold nanoparticles
  • microfluidic spray device
  • scattered light

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A Rapid and High-Throughput Assay for Light Scattering of SARS-CoV-2 Virion-Sized Particulates via Microfluidic Spray Device Reveals the Protection Performance of Face Masks against Virus Infection'. Together they form a unique fingerprint.

Cite this