TY - JOUR
T1 - A regularity theory for quasi-linear stochastic partial differential equations in weighted Sobolev spaces
AU - Kim, Ildoo
AU - Kim, Kyeong Hun
N1 - Publisher Copyright:
Copyright © 2017, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017/5/4
Y1 - 2017/5/4
N2 - We study the second-order quasi-linear stochastic partial differential equations (SPDEs) defined on C1 domains. The coefficients are random functions depending on t, x and the unknown solutions. We prove the uniqueness and existence of solutions in appropriate Sobolev spaces, and in addition, we obtain Lp and Hölder estimates of both the solution and its gradient.
AB - We study the second-order quasi-linear stochastic partial differential equations (SPDEs) defined on C1 domains. The coefficients are random functions depending on t, x and the unknown solutions. We prove the uniqueness and existence of solutions in appropriate Sobolev spaces, and in addition, we obtain Lp and Hölder estimates of both the solution and its gradient.
KW - Equations of divergence type
KW - Quasilinear stochastic partial differential equations
KW - Weighted Sobolev space
UR - http://www.scopus.com/inward/record.url?scp=85092831043&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092831043&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85092831043
JO - Zeitschrift für Induktive Abstammungs- und Vererbungslehre
JF - Zeitschrift für Induktive Abstammungs- und Vererbungslehre
SN - 0730-6512
ER -