A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines

Robert Jenssen, Marius Kloft, Alexander Zien, Sören Sonnenburg, Klaus Muller

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

We provide a novel interpretation of the dual of support vector machines (SVMs) in terms of scatter with respect to class prototypes and their mean. As a key contribution, we extend this framework to multiple classes, providing a new joint Scatter SVM algorithm, at the level of its binary counterpart in the number of optimization variables. This enables us to implement computationally efficient solvers based on sequential minimal and chunking optimization. As a further contribution, the primal problem formulation is developed in terms of regularized risk minimization and the hinge loss, revealing the score function to be used in the actual classification of test patterns. We investigate Scatter SVM properties related to generalization ability, computational efficiency, sparsity and sensitivity maps, and report promising results.

Original languageEnglish
Article numbere42947
JournalPLoS One
Volume7
Issue number10
DOIs
Publication statusPublished - 2012 Oct 30

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Fingerprint Dive into the research topics of 'A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines'. Together they form a unique fingerprint.

  • Cite this