A Selective FGFR inhibitor AZD4547 suppresses RANKL/M-CSF/OPG-dependent ostoclastogenesis and breast cancer growth in the metastatic bone microenvironment

Jinho Kang, Yoon Ji Choi, Bo Yeon Seo, Ukhyun Jo, Serkin Park, Yeul Hong Kim, Kyong Hwa Park

Research output: Contribution to journalArticle

Abstract

Aberrant activation of fibroblast growth factor receptor (FGFR) signalling contributes to progression and metastasis of many types of cancers including breast cancer. Accordingly, FGFR targeted tyrosine kinase inhibitors (TKIs) are currently under development. However, the efficacy of FGFR TKIs in the bone microenvironment where breast cancer cells most frequently metastasize and also where FGFR is biologically active, has not been clearly investigated. We investigated the FGFR-mediated interactions among cancer and the bone microenvironment stromal cells (osteoblasts and osteoclasts), and also the effects of FGFR inhibition in bone metastasis. We showed that addition of culture supernatant from the MDA-MB-134-VI FGFR-amplified breast cancer cells-activated FGFR siganalling in osteoblasts, including increased expression of RANKL, M-CSF, and osteoprotegerin (OPG). Further in vitro analyses showed that AZD4547, an FGFR TKI currently in clinical trials for breast cancer, decreased RANKL and M-CSF, and subsequently RANKL and M-CSF-dependent osteoclastogenesis of murine bone marrow monocytes. Moreover, AZD4547 suppressed osteoclastogenesis and tumor-induced osteolysis in an orthotopic breast cancer bone metastasis mouse model using FGFR non-amplified MDA-MB-231 cells. Collectively, our results support that FGFR inhibitors inhibit the bone microenvironment stromal cells including osteoblasts and osteoclasts, and effectively suppress both tumor and stromal compartments of bone metastasis.

Original languageEnglish
Article number8726
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

Fingerprint

Osteoprotegerin
Fibroblast Growth Factor Receptors
Macrophage Colony-Stimulating Factor
Breast Neoplasms
Bone and Bones
Growth
Osteoblasts
Protein-Tyrosine Kinases
Neoplasm Metastasis
Bone Neoplasms
Osteoclasts
Stromal Cells
Osteogenesis
AZD4547
Osteolysis
Tumor Microenvironment
Monocytes
Neoplasms
Bone Marrow
Clinical Trials

ASJC Scopus subject areas

  • General

Cite this

@article{33e98939df6f473fbb7b3c5dc5cfa763,
title = "A Selective FGFR inhibitor AZD4547 suppresses RANKL/M-CSF/OPG-dependent ostoclastogenesis and breast cancer growth in the metastatic bone microenvironment",
abstract = "Aberrant activation of fibroblast growth factor receptor (FGFR) signalling contributes to progression and metastasis of many types of cancers including breast cancer. Accordingly, FGFR targeted tyrosine kinase inhibitors (TKIs) are currently under development. However, the efficacy of FGFR TKIs in the bone microenvironment where breast cancer cells most frequently metastasize and also where FGFR is biologically active, has not been clearly investigated. We investigated the FGFR-mediated interactions among cancer and the bone microenvironment stromal cells (osteoblasts and osteoclasts), and also the effects of FGFR inhibition in bone metastasis. We showed that addition of culture supernatant from the MDA-MB-134-VI FGFR-amplified breast cancer cells-activated FGFR siganalling in osteoblasts, including increased expression of RANKL, M-CSF, and osteoprotegerin (OPG). Further in vitro analyses showed that AZD4547, an FGFR TKI currently in clinical trials for breast cancer, decreased RANKL and M-CSF, and subsequently RANKL and M-CSF-dependent osteoclastogenesis of murine bone marrow monocytes. Moreover, AZD4547 suppressed osteoclastogenesis and tumor-induced osteolysis in an orthotopic breast cancer bone metastasis mouse model using FGFR non-amplified MDA-MB-231 cells. Collectively, our results support that FGFR inhibitors inhibit the bone microenvironment stromal cells including osteoblasts and osteoclasts, and effectively suppress both tumor and stromal compartments of bone metastasis.",
author = "Jinho Kang and Choi, {Yoon Ji} and Seo, {Bo Yeon} and Ukhyun Jo and Serkin Park and Kim, {Yeul Hong} and Park, {Kyong Hwa}",
year = "2019",
month = "12",
day = "1",
doi = "10.1038/s41598-019-45278-w",
language = "English",
volume = "9",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - A Selective FGFR inhibitor AZD4547 suppresses RANKL/M-CSF/OPG-dependent ostoclastogenesis and breast cancer growth in the metastatic bone microenvironment

AU - Kang, Jinho

AU - Choi, Yoon Ji

AU - Seo, Bo Yeon

AU - Jo, Ukhyun

AU - Park, Serkin

AU - Kim, Yeul Hong

AU - Park, Kyong Hwa

PY - 2019/12/1

Y1 - 2019/12/1

N2 - Aberrant activation of fibroblast growth factor receptor (FGFR) signalling contributes to progression and metastasis of many types of cancers including breast cancer. Accordingly, FGFR targeted tyrosine kinase inhibitors (TKIs) are currently under development. However, the efficacy of FGFR TKIs in the bone microenvironment where breast cancer cells most frequently metastasize and also where FGFR is biologically active, has not been clearly investigated. We investigated the FGFR-mediated interactions among cancer and the bone microenvironment stromal cells (osteoblasts and osteoclasts), and also the effects of FGFR inhibition in bone metastasis. We showed that addition of culture supernatant from the MDA-MB-134-VI FGFR-amplified breast cancer cells-activated FGFR siganalling in osteoblasts, including increased expression of RANKL, M-CSF, and osteoprotegerin (OPG). Further in vitro analyses showed that AZD4547, an FGFR TKI currently in clinical trials for breast cancer, decreased RANKL and M-CSF, and subsequently RANKL and M-CSF-dependent osteoclastogenesis of murine bone marrow monocytes. Moreover, AZD4547 suppressed osteoclastogenesis and tumor-induced osteolysis in an orthotopic breast cancer bone metastasis mouse model using FGFR non-amplified MDA-MB-231 cells. Collectively, our results support that FGFR inhibitors inhibit the bone microenvironment stromal cells including osteoblasts and osteoclasts, and effectively suppress both tumor and stromal compartments of bone metastasis.

AB - Aberrant activation of fibroblast growth factor receptor (FGFR) signalling contributes to progression and metastasis of many types of cancers including breast cancer. Accordingly, FGFR targeted tyrosine kinase inhibitors (TKIs) are currently under development. However, the efficacy of FGFR TKIs in the bone microenvironment where breast cancer cells most frequently metastasize and also where FGFR is biologically active, has not been clearly investigated. We investigated the FGFR-mediated interactions among cancer and the bone microenvironment stromal cells (osteoblasts and osteoclasts), and also the effects of FGFR inhibition in bone metastasis. We showed that addition of culture supernatant from the MDA-MB-134-VI FGFR-amplified breast cancer cells-activated FGFR siganalling in osteoblasts, including increased expression of RANKL, M-CSF, and osteoprotegerin (OPG). Further in vitro analyses showed that AZD4547, an FGFR TKI currently in clinical trials for breast cancer, decreased RANKL and M-CSF, and subsequently RANKL and M-CSF-dependent osteoclastogenesis of murine bone marrow monocytes. Moreover, AZD4547 suppressed osteoclastogenesis and tumor-induced osteolysis in an orthotopic breast cancer bone metastasis mouse model using FGFR non-amplified MDA-MB-231 cells. Collectively, our results support that FGFR inhibitors inhibit the bone microenvironment stromal cells including osteoblasts and osteoclasts, and effectively suppress both tumor and stromal compartments of bone metastasis.

UR - http://www.scopus.com/inward/record.url?scp=85067817512&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067817512&partnerID=8YFLogxK

U2 - 10.1038/s41598-019-45278-w

DO - 10.1038/s41598-019-45278-w

M3 - Article

VL - 9

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 8726

ER -