A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study

Soo Young Chae, Sangil Suh, Inseon Ryoo, Arim Park, Kyoung Jin Noh, Hackjoon Shim, Hae Young Seol

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Fingerprint

Dive into the research topics of 'A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study'. Together they form a unique fingerprint.

Medicine & Life Sciences