A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain–Computer Interfaces

Wonjun Ko, Eunjin Jeon, Seungwoo Jeong, Jaeun Phyo, Heung Il Suk

Research output: Contribution to journalReview articlepeer-review

Abstract

Brain–computer interfaces (BCIs) utilizing machine learning techniques are an emerging technology that enables a communication pathway between a user and an external system, such as a computer. Owing to its practicality, electroencephalography (EEG) is one of the most widely used measurements for BCI. However, EEG has complex patterns and EEG-based BCIs mostly involve a cost/time-consuming calibration phase; thus, acquiring sufficient EEG data is rarely possible. Recently, deep learning (DL) has had a theoretical/practical impact on BCI research because of its use in learning representations of complex patterns inherent in EEG. Moreover, algorithmic advances in DL facilitate short/zero-calibration in BCI, thereby suppressing the data acquisition phase. Those advancements include data augmentation (DA), increasing the number of training samples without acquiring additional data, and transfer learning (TL), taking advantage of representative knowledge obtained from one dataset to address the so-called data insufficiency problem in other datasets. In this study, we review DL-based short/zero-calibration methods for BCI. Further, we elaborate methodological/algorithmic trends, highlight intriguing approaches in the literature, and discuss directions for further research. In particular, we search for generative model-based and geometric manipulation-based DA methods. Additionally, we categorize TL techniques in DL-based BCIs into explicit and implicit methods. Our systematization reveals advances in the DA and TL methods. Among the studies reviewed herein, ~45% of DA studies used generative model-based techniques, whereas ~45% of TL studies used explicit knowledge transferring strategy. Moreover, based on our literature review, we recommend an appropriate DA strategy for DL-based BCIs and discuss trends of TLs used in DL-based BCIs.

Original languageEnglish
Article number643386
JournalFrontiers in Human Neuroscience
Volume15
DOIs
Publication statusPublished - 2021 May 28

Keywords

  • brain–computer interface
  • data augmentation
  • deep learning
  • electroencephalography
  • transfer learning

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience

Fingerprint

Dive into the research topics of 'A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain–Computer Interfaces'. Together they form a unique fingerprint.

Cite this