A theoretical investigation of the gas-phase oxidation reaction of the saturated tert-butyl radical

Jong Ho Choi, Mi Ja Nam, Sung Eui Youn

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


The radical-radical reaction mechanisms and dynamics of ground-state atomic oxygen [O(3P)] with the saturated tert-butyl radical (t-C 4H9) are investigated using the density functional method and the complete basis set model. Two distinctive reaction pathways are predicted to be in competition: addition and abstraction. The barrierless addition of O(3P) to t-C4H9 leads to the formation of an energy-rich intermediate (OC4H9) on the lowest doublet potential energy surface, which undergoes subsequent direct elimination or isomerization-elimination leading to various products: C 3H6O + CH3, iso-C4H8O + H, C3H7O + CH2, and iso-C4H 8 + OH. The respective microscopic reaction processes examined with the aid of statistical calculations, predict that the major addition pathway is the formation of acetone (C3H6O) + CH3 through a low-barrier, single-step cleavage. For the direct, barrierless H-atom abstraction mechanism producing iso-C4H8 (isobutene) + OH, which was recently reported in gas-phase crossed-beam investigations, the reaction is described in terms of both an abstraction process (major) and a short-lived addition dynamic complex (minor).

Original languageEnglish
Pages (from-to)2526-2532
Number of pages7
Issue number12
Publication statusPublished - 2006 Dec 11


  • Ab initio calculations
  • Oxidation
  • Radicals
  • Reaction mechanisms
  • Transition states

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Physical and Theoretical Chemistry


Dive into the research topics of 'A theoretical investigation of the gas-phase oxidation reaction of the saturated tert-butyl radical'. Together they form a unique fingerprint.

Cite this