TY - JOUR
T1 - Accuracy of 3-unit fixed dental prostheses fabricated on 3D-printed casts
AU - Jang, Yeon
AU - Sim, Ji Young
AU - Park, Jong Kyoung
AU - Kim, Woong Chul
AU - Kim, Hae-Young
AU - Kim, Ji Hwan
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Statement of problem: Three-dimensional (3D)–printed casts are used successfully as diagnostic casts in orthodontics. However, whether 3D-printed casts are sufficiently accurate to be used as definitive casts for fixed dental prostheses (FDPs) is unclear. Purpose: The purpose of this in vitro study was to evaluate the fit of 3-unit FDPs fabricated on 3D-printed casts made by digital light processing and to investigate the clinical applicability of 3D printing. Material and methods: A master model was fabricated from epoxy resin. Stone casts were made from dual viscosity impressions (conventional stone cast [CS] group, n=10). The 3D-printed casts were fabricated using a 3D printer after obtaining digital virtual casts by digital scans (3D-printed cast [3DP] group, n=10). All FDPs were fabricated with a 5-axis milling machine. The master model and intaglio surface of the milled FDPs was superimposed using 3D analysis software to measure the accuracy. Two-way ANOVA was performed to identify a significant difference between the groups (3DP and CS) and sides (pontic side, nonpontic side) and their interactive effects (α=.05). The Tukey honestly significant difference test was used for post hoc analysis. Results: Two-way ANOVA showed significant differences between the 2 groups (3DP and CS) in the marginal and internal root mean square (RMS) values (P<.001). However, no significant difference was found in the marginal RMS values (P=.762) between the pontic and nonpontic sides. The 3DP showed significantly higher RMS values than the CS (P<.001). Conclusions: The fit of FDPs produced from 3D-printed casts was inferior to that of conventional stone casts; however, all FDPs showed clinically acceptable accuracy. These results suggest that 3D-printed casts have clinical applicability but that further improvement of the 3D printer is necessary for their application in prosthodontics.
AB - Statement of problem: Three-dimensional (3D)–printed casts are used successfully as diagnostic casts in orthodontics. However, whether 3D-printed casts are sufficiently accurate to be used as definitive casts for fixed dental prostheses (FDPs) is unclear. Purpose: The purpose of this in vitro study was to evaluate the fit of 3-unit FDPs fabricated on 3D-printed casts made by digital light processing and to investigate the clinical applicability of 3D printing. Material and methods: A master model was fabricated from epoxy resin. Stone casts were made from dual viscosity impressions (conventional stone cast [CS] group, n=10). The 3D-printed casts were fabricated using a 3D printer after obtaining digital virtual casts by digital scans (3D-printed cast [3DP] group, n=10). All FDPs were fabricated with a 5-axis milling machine. The master model and intaglio surface of the milled FDPs was superimposed using 3D analysis software to measure the accuracy. Two-way ANOVA was performed to identify a significant difference between the groups (3DP and CS) and sides (pontic side, nonpontic side) and their interactive effects (α=.05). The Tukey honestly significant difference test was used for post hoc analysis. Results: Two-way ANOVA showed significant differences between the 2 groups (3DP and CS) in the marginal and internal root mean square (RMS) values (P<.001). However, no significant difference was found in the marginal RMS values (P=.762) between the pontic and nonpontic sides. The 3DP showed significantly higher RMS values than the CS (P<.001). Conclusions: The fit of FDPs produced from 3D-printed casts was inferior to that of conventional stone casts; however, all FDPs showed clinically acceptable accuracy. These results suggest that 3D-printed casts have clinical applicability but that further improvement of the 3D printer is necessary for their application in prosthodontics.
UR - http://www.scopus.com/inward/record.url?scp=85064523231&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064523231&partnerID=8YFLogxK
U2 - 10.1016/j.prosdent.2018.11.004
DO - 10.1016/j.prosdent.2018.11.004
M3 - Article
C2 - 31027960
AN - SCOPUS:85064523231
SN - 0022-3913
JO - Journal of Prosthetic Dentistry
JF - Journal of Prosthetic Dentistry
ER -