Achieving Ultralow, Zero, and Inverted Tunneling Attenuation Coefficients in Molecular Wires with Extended Conjugation

Hyun Ju Lee, Soo Jin Cho, Hungu Kang, Xin He, Hyo Jae Yoon

Research output: Contribution to journalReview articlepeer-review

1 Citation (Scopus)

Abstract

Molecular tunnel junctions are organic devices miniaturized to the molecular scale. They serve as a versatile toolbox that can systematically examine charge transport behaviors at the atomic level. The electrical conductance of the molecular wire that bridges the two electrodes in a junction is significantly influenced by its chemical structure, and an intrinsically poor conductance is a major barrier for practical applications toward integrating individual molecules into electronic circuitry. Therefore, highly conjugated molecular wires are attractive as active components for the next-generation electronic devices, owing to the narrow highest occupied molecular orbital–lowest occupied molecular orbital gaps provided by their extended π-building blocks. This article aims to highlight the significance of highly conductive molecular wires in molecular electronics, the structures of which are inspired from conductive organic polymers, and presents a body of discussion on molecular wires exhibiting ultralow, zero, or inverted attenuation of tunneling probability at different lengths, along with future directions.

Original languageEnglish
Article number2005711
JournalSmall
Volume17
Issue number12
DOIs
Publication statusPublished - 2021 Mar 25

Keywords

  • highly conjugated molecular wires
  • inverted attenuation
  • molecular junctions
  • ultralow tunneling attenuation
  • weak length dependence

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Chemistry(all)
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Achieving Ultralow, Zero, and Inverted Tunneling Attenuation Coefficients in Molecular Wires with Extended Conjugation'. Together they form a unique fingerprint.

Cite this