Acquired METD1228V mutation and resistance to MET inhibition in lung cancer

Magda Bahcall, Taebo Sim, Cloud P. Paweletz, Jyoti D. Patel, Ryan S. Alden, Yanan Kuang, Adrian G. Sacher, Nam Doo Kim, Christine A. Lydon, Mark M. Awad, Michael T. Jaklitsch, Lynette M. Sholl, Pasi A. Jänne, Geoffrey R. Oxnard

Research output: Contribution to journalArticle

58 Citations (Scopus)

Abstract

Amplified and/or mutated MET can act as both a primary oncogenic driver and as a promoter of tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC). However, the landscape of MET-specific targeting agents remains underdeveloped, and understanding of mechanisms of resistance to MET TKIs is limited. Here, we present a case of a patient with lung adenocarcinoma harboring both a mutation in EGFR and an amplification of MET, who after progression on erlotinib responded dramatically to combined MET and EGFR inhibition with savolitinib and osimertinib. When resistance developed to this combination, a new MET kinase domain mutation, D1228V, was detected. Our in vitro findings demonstrate that MET D1228V induces resistance to type I MET TKIs through impaired drug binding, while sensitivity to type II MET TKIs is maintained. Based on these findings, the patient was treated with erlotinib combined with cabozantinib, a type II MET inhibitor, and exhibited a response. SIGNIFICANCE: With several structurally distinct MET inhibitors undergoing development for treatment of NSCLC, it is critical to identify mechanism-based therapies for drug resistance. We demonstrate that an acquired MET D1228V mutation mediates resistance to type I, but not type II, MET inhibitors, having therapeutic implications for the clinical use of sequential MET inhibitors.

Original languageEnglish
Pages (from-to)1334-1341
Number of pages8
JournalCancer Discovery
Volume6
Issue number12
DOIs
Publication statusPublished - 2016 Dec 1

ASJC Scopus subject areas

  • Oncology

Fingerprint Dive into the research topics of 'Acquired MET<sup>D1228V</sup> mutation and resistance to MET inhibition in lung cancer'. Together they form a unique fingerprint.

  • Cite this

    Bahcall, M., Sim, T., Paweletz, C. P., Patel, J. D., Alden, R. S., Kuang, Y., Sacher, A. G., Kim, N. D., Lydon, C. A., Awad, M. M., Jaklitsch, M. T., Sholl, L. M., Jänne, P. A., & Oxnard, G. R. (2016). Acquired METD1228V mutation and resistance to MET inhibition in lung cancer. Cancer Discovery, 6(12), 1334-1341. https://doi.org/10.1158/2159-8290.CD-16-0686