Adaptive Super Twisting Controller for a quadrotor UAV

Sujit Rajappa, Carl Masone, Heinrich H. Bulthoff, Paolo Stegagno

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Citations (Scopus)

Abstract

In this paper we present a robust quadrotor controller for tracking a reference trajectory in presence of uncertainties and disturbances. A Super Twisting controller is implemented using the recently proposed gain adaptation law [1], [2], which has the advantage of not requiring the knowledge of the upper bound of the lumped uncertainties. The controller design is based on the regular form of the quadrotor dynamics, without separation in two nested control loops for position and attitude. The controller is further extended by a feedforward dynamic inversion control that reduces the effort of the sliding mode controller. The higher order quadrotor dynamic model and proposed controller are validated using a SimMechanics physical simulation with initial error, parameter uncertainties, noisy measurements and external perturbations.

Original languageEnglish
Title of host publication2016 IEEE International Conference on Robotics and Automation, ICRA 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2971-2977
Number of pages7
ISBN (Electronic)9781467380263
DOIs
Publication statusPublished - 2016 Jun 8
Event2016 IEEE International Conference on Robotics and Automation, ICRA 2016 - Stockholm, Sweden
Duration: 2016 May 162016 May 21

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2016-June
ISSN (Print)1050-4729

Other

Other2016 IEEE International Conference on Robotics and Automation, ICRA 2016
Country/TerritorySweden
CityStockholm
Period16/5/1616/5/21

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Adaptive Super Twisting Controller for a quadrotor UAV'. Together they form a unique fingerprint.

Cite this