TY - GEN
T1 - Adaptive Thresholding of Functional Connectivity Networks for fMRI-Based Brain Disease Analysis
AU - Wang, Zhengdong
AU - Jie, Biao
AU - Bian, Weixin
AU - Zhang, Daoqiang
AU - Shen, Dinggang
AU - Liu, Mingxia
N1 - Funding Information:
Acknowledgment. This study was supported by NSFC (Nos. 61573023, 61976006, 61703301, and 61902003), Anhui-NSFC (Nos. 1708085MF145 and 1808085MF171), and AHNU-FOYHE (No. gxyqZD2017010).
Funding Information:
This study was supported by NSFC (Nos. 61573023, 61976006, 61703301, and 61902003), Anhui-NSFC (Nos. 1708085MF145 and 1808085MF171), and AHNU-FOYHE (No. gxyqZD2017010).
PY - 2019
Y1 - 2019
N2 - Functional connectivity (FC) networks based on functional magnetic resonance imaging (fMRI) data have been widely applied to automated identification of brain diseases, such as attention deficit hyperactivity disorder (ADHD) and Alzheimer’s disease (AD). To generate compact representations of FC networks for disease analysis, various thresholding strategies have been developed for analyzing brain FC networks. However, existing studies typically employ predefined values or percentages of connections to threshold the whole FC networks, thus ignoring the diversity of temporal correlations (particularly strong correlations) among different brain regions. In addition, in practice, it is usually very challenging to decide the optimal threshold or connection percentage in FC network analysis. To address these problems, in this paper, we propose a weight distribution based thresholding (WDT) method for FC network analysis with resting-state function MRI data. Specifically, for FC between a pair of brain regions, we calculate its optimal threshold value by using the weight (i.e., temporal correlation) distributions of the FC across two subject groups (i.e., patient and normal groups). The proposed WDT method can adaptively yields FC-specific thresholds, thus preserving the diversity information of FCs among different brain regions. Experiment results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate the effectiveness of our proposed WDT method.
AB - Functional connectivity (FC) networks based on functional magnetic resonance imaging (fMRI) data have been widely applied to automated identification of brain diseases, such as attention deficit hyperactivity disorder (ADHD) and Alzheimer’s disease (AD). To generate compact representations of FC networks for disease analysis, various thresholding strategies have been developed for analyzing brain FC networks. However, existing studies typically employ predefined values or percentages of connections to threshold the whole FC networks, thus ignoring the diversity of temporal correlations (particularly strong correlations) among different brain regions. In addition, in practice, it is usually very challenging to decide the optimal threshold or connection percentage in FC network analysis. To address these problems, in this paper, we propose a weight distribution based thresholding (WDT) method for FC network analysis with resting-state function MRI data. Specifically, for FC between a pair of brain regions, we calculate its optimal threshold value by using the weight (i.e., temporal correlation) distributions of the FC across two subject groups (i.e., patient and normal groups). The proposed WDT method can adaptively yields FC-specific thresholds, thus preserving the diversity information of FCs among different brain regions. Experiment results on both ADNI and ADHD-200 datasets with rs-fMRI data demonstrate the effectiveness of our proposed WDT method.
UR - http://www.scopus.com/inward/record.url?scp=85076270240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076270240&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-35817-4_3
DO - 10.1007/978-3-030-35817-4_3
M3 - Conference contribution
AN - SCOPUS:85076270240
SN - 9783030358167
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 18
EP - 26
BT - Graph Learning in Medical Imaging - 1st International Workshop, GLMI 2019, held in Conjunction with MICCAI 2019, Proceedings
A2 - Zhang, Daoqiang
A2 - Zhou, Luping
A2 - Jie, Biao
A2 - Liu, Mingxia
PB - Springer
T2 - 1st International Workshop on Graph Learning in Medical Imaging, GLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Y2 - 17 October 2019 through 17 October 2019
ER -