### Abstract

For every r-th order Weil functor T^{A}, we introduce the underlying k-th order Weil functors T^{Ak}, k = 1, . . . , r - 1. We deduce that T^{A}M → T^{Ar - 1} M is an affine bundle for every manifold M. Generalizing the classical concept of contact element by C. Ehresmann, we define the bundle κT^{A} M of contact elements of type A on M and we describe some affine properties of this bundle.

Original language | English |
---|---|

Pages (from-to) | 99-106 |

Number of pages | 8 |

Journal | Nagoya Mathematical Journal |

Volume | 158 |

Publication status | Published - 2000 Jun 1 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Nagoya Mathematical Journal*,

*158*, 99-106.

**Affine structure on Weil bundles.** / Kolář, Ivan; Kang, Hyeonbae; Koo, Hyung Woon.

Research output: Contribution to journal › Article

*Nagoya Mathematical Journal*, vol. 158, pp. 99-106.

}

TY - JOUR

T1 - Affine structure on Weil bundles

AU - Kolář, Ivan

AU - Kang, Hyeonbae

AU - Koo, Hyung Woon

PY - 2000/6/1

Y1 - 2000/6/1

N2 - For every r-th order Weil functor TA, we introduce the underlying k-th order Weil functors TAk, k = 1, . . . , r - 1. We deduce that TAM → TAr - 1 M is an affine bundle for every manifold M. Generalizing the classical concept of contact element by C. Ehresmann, we define the bundle κTA M of contact elements of type A on M and we describe some affine properties of this bundle.

AB - For every r-th order Weil functor TA, we introduce the underlying k-th order Weil functors TAk, k = 1, . . . , r - 1. We deduce that TAM → TAr - 1 M is an affine bundle for every manifold M. Generalizing the classical concept of contact element by C. Ehresmann, we define the bundle κTA M of contact elements of type A on M and we describe some affine properties of this bundle.

UR - http://www.scopus.com/inward/record.url?scp=0007068428&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0007068428&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0007068428

VL - 158

SP - 99

EP - 106

JO - Nagoya Mathematical Journal

JF - Nagoya Mathematical Journal

SN - 0027-7630

ER -