Aggregation-free and high stability core-shell polymer nanoparticles with high fullerene loading capacity, variable fullerene type, and compatibility towards biological conditions

Taejun Eom, Viktor Barát, Anzar Khan, Mihaiela C. Stuparu

Research output: Contribution to journalArticlepeer-review

Abstract

Fullerenes have unique structural and electronic properties that make them attractive candidates for diagnostic, therapeutic, and theranostic applications. However, their poor water solubility remains a limiting factor in realizing their full biomedical potential. Here, we present an approach based on a combination of supramolecular and covalent chemistry to access well-defined fullerene-containing polymer nanoparticles with a core-shell structure. In this approach, solvophobic forces and aromatic interactions first come into play to afford a micellar structure with a poly(ethylene glycol) shell and a corannulene-based fullerene-rich core. Covalent stabilization of the supramolecular assembly then affords core-crosslinked polymer nanoparticles. The shell makes these nanoparticles biocompatible and allows them to be dried to a solid and redispersed in water without inducing interparticle aggregation. The core allows a high content of different fullerene types to be encapsulated. Finally, covalent stabilization endows nanostructures with stability against changing environmental conditions.

Original languageEnglish
Pages (from-to)4949-4957
Number of pages9
JournalChemical Science
Volume12
Issue number13
DOIs
Publication statusPublished - 2021 Apr 7

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint Dive into the research topics of 'Aggregation-free and high stability core-shell polymer nanoparticles with high fullerene loading capacity, variable fullerene type, and compatibility towards biological conditions'. Together they form a unique fingerprint.

Cite this