TY - JOUR
T1 - Alternating steady state free precession for estimation of current-induced magnetic flux density
T2 - A feasibility study
AU - Lee, Hyunyeol
AU - Jeong, Woo Chul
AU - Kim, Hyung Joong
AU - Woo, Eung Je
AU - Park, Jaeseok
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Purpose To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz) and conductivity distribution. Methods In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz. A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Results Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. Conclusion We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging.
AB - Purpose To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz) and conductivity distribution. Methods In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz. A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Results Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. Conclusion We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging.
KW - alternating steady-state free precession
KW - conductivity
KW - magnetic resonance imaging
KW - steady-state free precession
UR - http://www.scopus.com/inward/record.url?scp=84931864368&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84931864368&partnerID=8YFLogxK
U2 - 10.1002/mrm.25813
DO - 10.1002/mrm.25813
M3 - Article
C2 - 26095037
AN - SCOPUS:84931864368
SN - 0740-3194
VL - 75
SP - 2009
EP - 2019
JO - Magnetic Resonance in Medicine
JF - Magnetic Resonance in Medicine
IS - 5
ER -