Amorphous Molybdenum Sulfide on Three-Dimensional Hierarchical Hollow Microspheres Comprising Bamboo-like N-Doped Carbon Nanotubes as a Highly Active Hydrogen Evolution Reaction Catalyst

Seung Keun Park, Jin Koo Kim, Yun Chan Kang

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Novel amorphous-MoSx-coated three-dimensional (3D) hierarchical hollow microspheres comprising one-dimensional bamboo-like N-doped carbon nanotubes (BNCNT/MoSx-HM) are developed as a highly active electrocatalyst for the hydrogen evolution reaction (HER). The 3D hierarchical microspheres are easily prepared via the growth of bamboo-like N-doped CNTs (BNCNTs) on both the inner and outer surfaces of Co3O4-MgO/carbon hollow microspheres, which are prepared by spray pyrolysis, followed by uniform MoSx coating of the surface. Metallic Co nanocrystals play a key role in the growth of BNCNTs, acting as catalysts for their nucleation. Owing to the electrostatic attraction between the N-doped sites in BNCNTs and the thiomolybdate precursor anions, few-layered amorphous MoSx catalysts are well deposited on BNCNT surfaces, even at low temperature. The 3D hierarchical hollow structure facilitates electrolyte access, and the synergistic effect between the MoSx catalyst material with ample active sites and the conductive N-doped CNTs increases electrochemical activity for the HER. Accordingly, electrochemical assessment of BNCNT/MoSx-HM reveals a overpotential of 159 mV at a current density of 10 mA cm-2, a low Tafel slope of 41.1 mV dec-1, and excellent stability in acidic conditions.

Original languageEnglish
Pages (from-to)12706-12715
Number of pages10
JournalACS Sustainable Chemistry and Engineering
Volume6
Issue number10
DOIs
Publication statusPublished - 2018 Oct 1

Fingerprint

Carbon Nanotubes
Bamboo
bamboo
molybdenum
Microspheres
Molybdenum
Hydrogen
Carbon nanotubes
catalyst
sulfide
hydrogen
Catalysts
Spray pyrolysis
Electrocatalysts
Sulfides
molybdenum disulfide
carbon nanotube
Nanocrystals
electrolyte
pyrolysis

Keywords

  • Hierarchical structure
  • Hydrogen evolution reaction
  • Molybdenum sulfide
  • N-doped carbon nanotubes
  • Spray pyrolysis

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Renewable Energy, Sustainability and the Environment

Cite this

@article{706ba12d3b46499fb1acc0784964a735,
title = "Amorphous Molybdenum Sulfide on Three-Dimensional Hierarchical Hollow Microspheres Comprising Bamboo-like N-Doped Carbon Nanotubes as a Highly Active Hydrogen Evolution Reaction Catalyst",
abstract = "Novel amorphous-MoSx-coated three-dimensional (3D) hierarchical hollow microspheres comprising one-dimensional bamboo-like N-doped carbon nanotubes (BNCNT/MoSx-HM) are developed as a highly active electrocatalyst for the hydrogen evolution reaction (HER). The 3D hierarchical microspheres are easily prepared via the growth of bamboo-like N-doped CNTs (BNCNTs) on both the inner and outer surfaces of Co3O4-MgO/carbon hollow microspheres, which are prepared by spray pyrolysis, followed by uniform MoSx coating of the surface. Metallic Co nanocrystals play a key role in the growth of BNCNTs, acting as catalysts for their nucleation. Owing to the electrostatic attraction between the N-doped sites in BNCNTs and the thiomolybdate precursor anions, few-layered amorphous MoSx catalysts are well deposited on BNCNT surfaces, even at low temperature. The 3D hierarchical hollow structure facilitates electrolyte access, and the synergistic effect between the MoSx catalyst material with ample active sites and the conductive N-doped CNTs increases electrochemical activity for the HER. Accordingly, electrochemical assessment of BNCNT/MoSx-HM reveals a overpotential of 159 mV at a current density of 10 mA cm-2, a low Tafel slope of 41.1 mV dec-1, and excellent stability in acidic conditions.",
keywords = "Hierarchical structure, Hydrogen evolution reaction, Molybdenum sulfide, N-doped carbon nanotubes, Spray pyrolysis",
author = "Park, {Seung Keun} and Kim, {Jin Koo} and Kang, {Yun Chan}",
year = "2018",
month = "10",
day = "1",
doi = "10.1021/acssuschemeng.8b01843",
language = "English",
volume = "6",
pages = "12706--12715",
journal = "ACS Sustainable Chemistry and Engineering",
issn = "2168-0485",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - Amorphous Molybdenum Sulfide on Three-Dimensional Hierarchical Hollow Microspheres Comprising Bamboo-like N-Doped Carbon Nanotubes as a Highly Active Hydrogen Evolution Reaction Catalyst

AU - Park, Seung Keun

AU - Kim, Jin Koo

AU - Kang, Yun Chan

PY - 2018/10/1

Y1 - 2018/10/1

N2 - Novel amorphous-MoSx-coated three-dimensional (3D) hierarchical hollow microspheres comprising one-dimensional bamboo-like N-doped carbon nanotubes (BNCNT/MoSx-HM) are developed as a highly active electrocatalyst for the hydrogen evolution reaction (HER). The 3D hierarchical microspheres are easily prepared via the growth of bamboo-like N-doped CNTs (BNCNTs) on both the inner and outer surfaces of Co3O4-MgO/carbon hollow microspheres, which are prepared by spray pyrolysis, followed by uniform MoSx coating of the surface. Metallic Co nanocrystals play a key role in the growth of BNCNTs, acting as catalysts for their nucleation. Owing to the electrostatic attraction between the N-doped sites in BNCNTs and the thiomolybdate precursor anions, few-layered amorphous MoSx catalysts are well deposited on BNCNT surfaces, even at low temperature. The 3D hierarchical hollow structure facilitates electrolyte access, and the synergistic effect between the MoSx catalyst material with ample active sites and the conductive N-doped CNTs increases electrochemical activity for the HER. Accordingly, electrochemical assessment of BNCNT/MoSx-HM reveals a overpotential of 159 mV at a current density of 10 mA cm-2, a low Tafel slope of 41.1 mV dec-1, and excellent stability in acidic conditions.

AB - Novel amorphous-MoSx-coated three-dimensional (3D) hierarchical hollow microspheres comprising one-dimensional bamboo-like N-doped carbon nanotubes (BNCNT/MoSx-HM) are developed as a highly active electrocatalyst for the hydrogen evolution reaction (HER). The 3D hierarchical microspheres are easily prepared via the growth of bamboo-like N-doped CNTs (BNCNTs) on both the inner and outer surfaces of Co3O4-MgO/carbon hollow microspheres, which are prepared by spray pyrolysis, followed by uniform MoSx coating of the surface. Metallic Co nanocrystals play a key role in the growth of BNCNTs, acting as catalysts for their nucleation. Owing to the electrostatic attraction between the N-doped sites in BNCNTs and the thiomolybdate precursor anions, few-layered amorphous MoSx catalysts are well deposited on BNCNT surfaces, even at low temperature. The 3D hierarchical hollow structure facilitates electrolyte access, and the synergistic effect between the MoSx catalyst material with ample active sites and the conductive N-doped CNTs increases electrochemical activity for the HER. Accordingly, electrochemical assessment of BNCNT/MoSx-HM reveals a overpotential of 159 mV at a current density of 10 mA cm-2, a low Tafel slope of 41.1 mV dec-1, and excellent stability in acidic conditions.

KW - Hierarchical structure

KW - Hydrogen evolution reaction

KW - Molybdenum sulfide

KW - N-doped carbon nanotubes

KW - Spray pyrolysis

UR - http://www.scopus.com/inward/record.url?scp=85053640197&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053640197&partnerID=8YFLogxK

U2 - 10.1021/acssuschemeng.8b01843

DO - 10.1021/acssuschemeng.8b01843

M3 - Article

AN - SCOPUS:85053640197

VL - 6

SP - 12706

EP - 12715

JO - ACS Sustainable Chemistry and Engineering

JF - ACS Sustainable Chemistry and Engineering

SN - 2168-0485

IS - 10

ER -