An endpoint estimate for some maximal operators associated to submanifolds of low codimension

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We show that the maximal operator Mf(cursive Greek chi) = supj∈ℤ

Original languageEnglish
Pages (from-to)323-338
Number of pages16
JournalPacific Journal of Mathematics
Volume201
Issue number2
Publication statusPublished - 2001 Dec 1
Externally publishedYes

Fingerprint

Maximal Operator
Submanifolds
Codimension
Estimate

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

An endpoint estimate for some maximal operators associated to submanifolds of low codimension. / Heo, Ya-Ryong.

In: Pacific Journal of Mathematics, Vol. 201, No. 2, 01.12.2001, p. 323-338.

Research output: Contribution to journalArticle

@article{3d1b0d34c31e4bffa14aa35183f853ac,
title = "An endpoint estimate for some maximal operators associated to submanifolds of low codimension",
abstract = "We show that the maximal operator Mf(cursive Greek chi) = supj∈ℤ",
author = "Ya-Ryong Heo",
year = "2001",
month = "12",
day = "1",
language = "English",
volume = "201",
pages = "323--338",
journal = "Pacific Journal of Mathematics",
issn = "0030-8730",
publisher = "University of California, Berkeley",
number = "2",

}

TY - JOUR

T1 - An endpoint estimate for some maximal operators associated to submanifolds of low codimension

AU - Heo, Ya-Ryong

PY - 2001/12/1

Y1 - 2001/12/1

N2 - We show that the maximal operator Mf(cursive Greek chi) = supj∈ℤ

AB - We show that the maximal operator Mf(cursive Greek chi) = supj∈ℤ

UR - http://www.scopus.com/inward/record.url?scp=0040376384&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0040376384&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0040376384

VL - 201

SP - 323

EP - 338

JO - Pacific Journal of Mathematics

JF - Pacific Journal of Mathematics

SN - 0030-8730

IS - 2

ER -