TY - JOUR
T1 - An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus
T2 - Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses
AU - Bathige, S. D.N.K.
AU - Umasuthan, Navaneethaiyer
AU - Park, Hae Chul
AU - Lee, Jehee
N1 - Funding Information:
This research was supported by Golden Seed Project, Ministry of Agriculture, Food and Rural Affairs (MAFRA) , Ministry of Oceans and Fisheries (MOF) , Rural Development Administration (RDA) and Korea Forest Service (KFS) .
Publisher Copyright:
© 2015 Elsevier Ltd.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in the disk abalone. Further, this study provides a basis for structural and functional exploration of STAT members in the invertebrate JAK/STAT signaling pathway.
AB - Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in the disk abalone. Further, this study provides a basis for structural and functional exploration of STAT members in the invertebrate JAK/STAT signaling pathway.
KW - Developmental stage
KW - Genomic structure
KW - Haliotis discus discus
KW - Immune response
KW - Signal transducer and activator of transcription 5 (STAT5)
UR - http://www.scopus.com/inward/record.url?scp=84949642639&partnerID=8YFLogxK
U2 - 10.1016/j.dci.2015.11.012
DO - 10.1016/j.dci.2015.11.012
M3 - Article
C2 - 26616564
AN - SCOPUS:84949642639
SN - 0145-305X
VL - 56
SP - 46
EP - 56
JO - Developmental and Comparative Immunology
JF - Developmental and Comparative Immunology
ER -