Analysis of CCR2 splice variant expression patterns and functional properties

Hee Kyung Park, Yun Hee Na, Huong Thi Nguyen, Lan Phuong Nguyen, Sunghoon Hurh, Jae Young Seong, Cheol Soon Lee, Byung Joo Ham, Jong Ik Hwang

Research output: Contribution to journalArticlepeer-review

Abstract

Background: C–C motif chemokine receptor 2 (CCR2), the main receptor for monocyte chemoattractant protein-1 (MCP-1), is expressed on immune cells, including monocytes, macrophages, and activated T cells, and mediates cell migration toward MCP-1 in inflammation-related diseases. The CCR2 gene encodes two isoforms: CCR2A and CCR2B. The CCR2B open reading frame is localized in a single exon, similar to other chemokine receptors, and CCR2A and CCR2B feature different amino acid sequences in their C-terminal intracellular loops due to alternative splicing. Most biochemical studies on CCR2-related cellular responses in the immune system have focused on CCR2B, with few reports focused on CCR2A. Understanding the functional properties of CCR2A in cellular responses may elucidate the roles played by MCP-1 and CCR2 in pathophysiological responses. Results: CCR2 gene expression analysis in several cell types revealed that most adherent cells only expressed CCR2A, whereas CCR2B expression was dominant in monocytic cells. The C-terminal Helix 8 region of CCR2A contains few basic amino acids, which may be unfavorable for cell surface localization, as confirmed with the HiBiT assay. CCR2B contains many C-terminal Ser/Thr residues, similar to other chemokine receptors, which may be phosphorylated by G protein–coupled receptor kinases (GRKs) to promote β-arrestin recruitment and subsequent endocytosis. By contrast, CCR2A contains few C-terminal Ser/Thr residues, which are unlikely to be phosphorylated by GRKs. CCR2A localized on the cell surface is resistant to internalization, despite the interaction between Gβ and GRKs induced by ligand binding with CCR2A. CCR2A induced cellular responses at a relatively higher degree than CCR2B, although both receptors mediated signaling events through Gαq and Gαi. HeLa cells lacking CCR2A showed slowed growth compared with parent cells, regardless of MCP-1 stimulation, and their chemotactic activity toward MCP-1, in addition to basal motility, was significantly impaired. Conclusion: MCP-1 and CCR2 may play pivotal roles in cancer progression by recruiting macrophages into cancer tissue. This study demonstrates that CCR2A but not CCR2B is expressed in solid cancer–derived cells. CCR2A is resistant to internalization by β-arrestin due to a distinct C-terminal region from CCR2B, which enhances MCP-1-stimulated responses, indicating that CCR2A may play essential roles in solid cancer progression.

Original languageEnglish
Article number59
JournalCell and Bioscience
Volume12
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Keywords

  • CCR2
  • Chemotaxis
  • MCP-1
  • Splice variant
  • β-Arrestin

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Analysis of CCR2 splice variant expression patterns and functional properties'. Together they form a unique fingerprint.

Cite this