Antidotes of cyanide intoxication

Sung Woo Lee, Jun Sik Kim

Research output: Contribution to journalReview article

1 Citation (Scopus)


Cyanide poisoning can occur from industrial disasters, smoke inhalation from fire, food, and multiple other sources. Cyanide inhibits mitochondrial oxidative phosphorylation by blocking mitochondrial cytochrome oxidase, which in turn results in anaerobic metabolism and depletion of adenosine triphosphate in cells. Rapid administration of antidote is crucial for life saving insevere cyanide poisoning. Multiple antidotes are available for cyanide poisoning. The action mechanism of cyanide antidotes include formation of methemoglobin, production of less or notoxic complex, and sulfane sulfur supplementation. At present, the available antidotes are amylnitrite, sodium nitrite, sodium thiosulfate, hydroxocobalamin, 4-dimethylaminophenol, and dicobalt edetate. Amyl nitrite, sodium nitrite, and 4-dimethylaminophenol induce the formation of methemoglobin. Sodium thiosulfate supplies the sulfane sulfur molecule to rhodanese, allowing formation of thiocyanate and regeneration of native enzymes. Hydroxocobalamin binds cyaniderapidly and irreversibly to form cyanocobalamin. Dicobalt edetate acts as a chelator of cyanide, forming a stable complex. Based on the best evidence available, a treatment regimen of 100% oxygen and hydroxocobalamin, with or without sodium thiosulfate, is recommended for cyanide poisoning. Amyl nitrite and sodium nitrite, which induce methemoglobin, should be avoided in victims of smoke inhalation because of serious adverse effects.

Original languageEnglish
Pages (from-to)1076-1083
Number of pages8
JournalJournal of the Korean Medical Association
Issue number12
Publication statusPublished - 2013 Dec 1


  • Cyanide
  • Cyanide antidote
  • Hydroxocobalamin
  • Sodium thiosulfate

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Antidotes of cyanide intoxication'. Together they form a unique fingerprint.

  • Cite this