TY - JOUR
T1 - APFS
T2 - Adaptive Probabilistic Filter Scheduling against distributed denial-of-service attacks
AU - Seo, Dongwon
AU - Lee, Heejo
AU - Perrig, Adrian
N1 - Funding Information:
This research was supported by the R&BD Support Center of Seoul Development Institute and the South Korean government (WR080951). The preliminary version of this paper was presented in the 36th IEEE Local Computer Networks (LCN 2011) ( Seo et al., 2011 ).
PY - 2013
Y1 - 2013
N2 - Distributed denial-of-service (DDoS) attacks are considered to be among the most crucial security challenges in current networks because they significantly disrupt the availability of a service by consuming extreme amount of resource and/or by creating link congestions. One type of countermeasure against DDoS attacks is a filter-based approach where filter-based intermediate routers within the network coordinate with each other to filter undesired flows. The key to success for this approach is effective filter propagation and management techniques. However, existing filter-based approaches do not consider effective filter propagation and management. In this paper, we define three necessary properties for a viable DDoS solution: how to practically propagate filters, how to place filters to effective filter routers, and how to manage filters to maximize the efficacy of the defense. We propose a novel mechanism, called Adaptive Probabilistic Filter Scheduling (APFS), that effectively defends against DDoS attacks and also satisfies the three necessary properties. In APFS, a filter router adaptively calculates its own marking probability based on three factors: 1) hop count from a sender, 2) the filter router's resource availability, and 3) the filter router's link degree. That is, a filter router that is closer to attackers, has more available resources, or has more connections to neighbors inserts its marking with a higher probability. These three factors lead a victim to receive more markings from more effective filter routers, and thus, filters are quickly distributed to effective filter routers. Moreover, each filter router manages multiple filters using a filter scheduling policy that allows it to selectively keep the most effective filters depending on attack situations. Experimental results show that APFS has a faster filter propagation and a higher attack blocking ratio than existing approaches that use fixed marking probability. In addition, APFS has a 44% higher defense effectiveness than existing filter-based approaches that do not use a filter scheduling policy.
AB - Distributed denial-of-service (DDoS) attacks are considered to be among the most crucial security challenges in current networks because they significantly disrupt the availability of a service by consuming extreme amount of resource and/or by creating link congestions. One type of countermeasure against DDoS attacks is a filter-based approach where filter-based intermediate routers within the network coordinate with each other to filter undesired flows. The key to success for this approach is effective filter propagation and management techniques. However, existing filter-based approaches do not consider effective filter propagation and management. In this paper, we define three necessary properties for a viable DDoS solution: how to practically propagate filters, how to place filters to effective filter routers, and how to manage filters to maximize the efficacy of the defense. We propose a novel mechanism, called Adaptive Probabilistic Filter Scheduling (APFS), that effectively defends against DDoS attacks and also satisfies the three necessary properties. In APFS, a filter router adaptively calculates its own marking probability based on three factors: 1) hop count from a sender, 2) the filter router's resource availability, and 3) the filter router's link degree. That is, a filter router that is closer to attackers, has more available resources, or has more connections to neighbors inserts its marking with a higher probability. These three factors lead a victim to receive more markings from more effective filter routers, and thus, filters are quickly distributed to effective filter routers. Moreover, each filter router manages multiple filters using a filter scheduling policy that allows it to selectively keep the most effective filters depending on attack situations. Experimental results show that APFS has a faster filter propagation and a higher attack blocking ratio than existing approaches that use fixed marking probability. In addition, APFS has a 44% higher defense effectiveness than existing filter-based approaches that do not use a filter scheduling policy.
KW - Adaptive packet marking
KW - DDoS attack defense
KW - Filter propagation
KW - Filter scheduling
KW - Filter-based defense
UR - http://www.scopus.com/inward/record.url?scp=84888861138&partnerID=8YFLogxK
U2 - 10.1016/j.cose.2013.09.002
DO - 10.1016/j.cose.2013.09.002
M3 - Article
AN - SCOPUS:84888861138
VL - 39
SP - 366
EP - 385
JO - Computers and Security
JF - Computers and Security
SN - 0167-4048
IS - PART B
ER -