TY - GEN
T1 - Asymmetrical Multi-task Attention U-Net for the Segmentation of Prostate Bed in CT Image
AU - Xu, Xuanang
AU - Lian, Chunfeng
AU - Wang, Shuai
AU - Wang, Andrew
AU - Royce, Trevor
AU - Chen, Ronald
AU - Lian, Jun
AU - Shen, Dinggang
N1 - Funding Information:
This work was supported in part by NIH Grant CA206100.
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Segmentation of the prostate bed, the residual tissue after the removal of the prostate gland, is an essential prerequisite for post-prostatectomy radiotherapy but also a challenging task due to its non-contrast boundaries and highly variable shapes relying on neighboring organs. In this work, we propose a novel deep learning-based method to automatically segment this “invisible target”. As the main idea of our design, we expect to get reference from the surrounding normal structures (bladder&rectum) and take advantage of this information to facilitate the prostate bed segmentation. To achieve this goal, we first use a U-Net as the backbone network to perform the bladder&rectum segmentation, which serves as a low-level task that can provide references to the high-level task of the prostate bed segmentation. Based on the backbone network, we build a novel attention network with a series of cascaded attention modules to further extract discriminative features for the high-level prostate bed segmentation task. Since the attention network has one-sided dependency on the backbone network, simulating the clinical workflow to use normal structures to guide the segmentation of radiotherapy target, we name the final composition model asymmetrical multi-task attention U-Net. Extensive experiments on a clinical dataset consisting of 186 CT images demonstrate the effectiveness of this new design and the superior performance of the model in comparison to the conventional atlas-based methods for prostate bed segmentation. The source code is publicly available at https://github.com/superxuang/amta-net.
AB - Segmentation of the prostate bed, the residual tissue after the removal of the prostate gland, is an essential prerequisite for post-prostatectomy radiotherapy but also a challenging task due to its non-contrast boundaries and highly variable shapes relying on neighboring organs. In this work, we propose a novel deep learning-based method to automatically segment this “invisible target”. As the main idea of our design, we expect to get reference from the surrounding normal structures (bladder&rectum) and take advantage of this information to facilitate the prostate bed segmentation. To achieve this goal, we first use a U-Net as the backbone network to perform the bladder&rectum segmentation, which serves as a low-level task that can provide references to the high-level task of the prostate bed segmentation. Based on the backbone network, we build a novel attention network with a series of cascaded attention modules to further extract discriminative features for the high-level prostate bed segmentation task. Since the attention network has one-sided dependency on the backbone network, simulating the clinical workflow to use normal structures to guide the segmentation of radiotherapy target, we name the final composition model asymmetrical multi-task attention U-Net. Extensive experiments on a clinical dataset consisting of 186 CT images demonstrate the effectiveness of this new design and the superior performance of the model in comparison to the conventional atlas-based methods for prostate bed segmentation. The source code is publicly available at https://github.com/superxuang/amta-net.
KW - CT image segmentation
KW - Fully convolutional networks
KW - Multi-task learning
UR - http://www.scopus.com/inward/record.url?scp=85092785600&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59719-1_46
DO - 10.1007/978-3-030-59719-1_46
M3 - Conference contribution
AN - SCOPUS:85092785600
SN - 9783030597184
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 470
EP - 479
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
A2 - Martel, Anne L.
A2 - Abolmaesumi, Purang
A2 - Stoyanov, Danail
A2 - Mateus, Diana
A2 - Zuluaga, Maria A.
A2 - Zhou, S. Kevin
A2 - Racoceanu, Daniel
A2 - Joskowicz, Leo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Y2 - 4 October 2020 through 8 October 2020
ER -