AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

Jun Hyeok Kim, Woo Young Hyun, Hoai Nguyen Nguyen, Chan Young Jeong, Liming Xiong, Suk Whan Hong, Hojoung Lee

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis.

Original languageEnglish
Pages (from-to)559-571
Number of pages13
JournalPlant, Cell and Environment
Volume38
Issue number3
DOIs
Publication statusPublished - 2015 Mar 1

Keywords

  • Arabidopsis thaliana
  • MYB transcription factor

ASJC Scopus subject areas

  • Plant Science
  • Physiology

Fingerprint Dive into the research topics of 'AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5'. Together they form a unique fingerprint.

  • Cite this