Atomic clock performance enabling geodesy below the centimetre level

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, Tai Hyun Yoon, A. D. Ludlow

Research output: Contribution to journalLetter

43 Citations (Scopus)

Abstract

The passage of time is tracked by counting oscillations of a frequency reference, such as Earth’s revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10 −17 level 1–5 . However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer’s reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10 −18 , measurement instability of 3.2 × 10 −19 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [−7 ± (5) stat ± (8) sys ] × 10 −19 , where ‘stat’ and ‘sys’ indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential 5–9 . Near the surface of Earth, clock comparisons at the 1 × 10 −18 level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena 10 , detect gravitational waves 11 , test general relativity 12 and search for dark matter 13–17 .

Original languageEnglish
Pages (from-to)87-90
Number of pages4
JournalNature
Volume564
Issue number7734
DOIs
Publication statusPublished - 2018 Dec 6

Fingerprint

atomic clocks
geodesy
clocks
relativity
sensitivity
gravitation
geopotential
pendulums
ytterbium
gravitational waves
dark matter
counting
oscillations
probes

ASJC Scopus subject areas

  • General

Cite this

McGrew, W. F., Zhang, X., Fasano, R. J., Schäffer, S. A., Beloy, K., Nicolodi, D., ... Ludlow, A. D. (2018). Atomic clock performance enabling geodesy below the centimetre level. Nature, 564(7734), 87-90. https://doi.org/10.1038/s41586-018-0738-2

Atomic clock performance enabling geodesy below the centimetre level. / McGrew, W. F.; Zhang, X.; Fasano, R. J.; Schäffer, S. A.; Beloy, K.; Nicolodi, D.; Brown, R. C.; Hinkley, N.; Milani, G.; Schioppo, M.; Yoon, Tai Hyun; Ludlow, A. D.

In: Nature, Vol. 564, No. 7734, 06.12.2018, p. 87-90.

Research output: Contribution to journalLetter

McGrew, WF, Zhang, X, Fasano, RJ, Schäffer, SA, Beloy, K, Nicolodi, D, Brown, RC, Hinkley, N, Milani, G, Schioppo, M, Yoon, TH & Ludlow, AD 2018, 'Atomic clock performance enabling geodesy below the centimetre level', Nature, vol. 564, no. 7734, pp. 87-90. https://doi.org/10.1038/s41586-018-0738-2
McGrew WF, Zhang X, Fasano RJ, Schäffer SA, Beloy K, Nicolodi D et al. Atomic clock performance enabling geodesy below the centimetre level. Nature. 2018 Dec 6;564(7734):87-90. https://doi.org/10.1038/s41586-018-0738-2
McGrew, W. F. ; Zhang, X. ; Fasano, R. J. ; Schäffer, S. A. ; Beloy, K. ; Nicolodi, D. ; Brown, R. C. ; Hinkley, N. ; Milani, G. ; Schioppo, M. ; Yoon, Tai Hyun ; Ludlow, A. D. / Atomic clock performance enabling geodesy below the centimetre level. In: Nature. 2018 ; Vol. 564, No. 7734. pp. 87-90.
@article{218ab0f25857457480c0dc4c76163fc8,
title = "Atomic clock performance enabling geodesy below the centimetre level",
abstract = "The passage of time is tracked by counting oscillations of a frequency reference, such as Earth’s revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10 −17 level 1–5 . However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer’s reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10 −18 , measurement instability of 3.2 × 10 −19 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [−7 ± (5) stat ± (8) sys ] × 10 −19 , where ‘stat’ and ‘sys’ indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential 5–9 . Near the surface of Earth, clock comparisons at the 1 × 10 −18 level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena 10 , detect gravitational waves 11 , test general relativity 12 and search for dark matter 13–17 .",
author = "McGrew, {W. F.} and X. Zhang and Fasano, {R. J.} and Sch{\"a}ffer, {S. A.} and K. Beloy and D. Nicolodi and Brown, {R. C.} and N. Hinkley and G. Milani and M. Schioppo and Yoon, {Tai Hyun} and Ludlow, {A. D.}",
year = "2018",
month = "12",
day = "6",
doi = "10.1038/s41586-018-0738-2",
language = "English",
volume = "564",
pages = "87--90",
journal = "Nature Cell Biology",
issn = "1465-7392",
publisher = "Nature Publishing Group",
number = "7734",

}

TY - JOUR

T1 - Atomic clock performance enabling geodesy below the centimetre level

AU - McGrew, W. F.

AU - Zhang, X.

AU - Fasano, R. J.

AU - Schäffer, S. A.

AU - Beloy, K.

AU - Nicolodi, D.

AU - Brown, R. C.

AU - Hinkley, N.

AU - Milani, G.

AU - Schioppo, M.

AU - Yoon, Tai Hyun

AU - Ludlow, A. D.

PY - 2018/12/6

Y1 - 2018/12/6

N2 - The passage of time is tracked by counting oscillations of a frequency reference, such as Earth’s revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10 −17 level 1–5 . However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer’s reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10 −18 , measurement instability of 3.2 × 10 −19 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [−7 ± (5) stat ± (8) sys ] × 10 −19 , where ‘stat’ and ‘sys’ indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential 5–9 . Near the surface of Earth, clock comparisons at the 1 × 10 −18 level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena 10 , detect gravitational waves 11 , test general relativity 12 and search for dark matter 13–17 .

AB - The passage of time is tracked by counting oscillations of a frequency reference, such as Earth’s revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10 −17 level 1–5 . However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer’s reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10 −18 , measurement instability of 3.2 × 10 −19 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [−7 ± (5) stat ± (8) sys ] × 10 −19 , where ‘stat’ and ‘sys’ indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential 5–9 . Near the surface of Earth, clock comparisons at the 1 × 10 −18 level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena 10 , detect gravitational waves 11 , test general relativity 12 and search for dark matter 13–17 .

UR - http://www.scopus.com/inward/record.url?scp=85057727026&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85057727026&partnerID=8YFLogxK

U2 - 10.1038/s41586-018-0738-2

DO - 10.1038/s41586-018-0738-2

M3 - Letter

VL - 564

SP - 87

EP - 90

JO - Nature Cell Biology

JF - Nature Cell Biology

SN - 1465-7392

IS - 7734

ER -