TY - GEN
T1 - Attribute vector guided groupwise registration
AU - Wang, Qian
AU - Yap, Pew Thian
AU - Wu, Guorong
AU - Shen, Dinggang
N1 - Funding Information:
This work was supported in part by NIH grants R01 EB006733, R01 EB008374, RC1 MH088520, and R01 EB009634.
PY - 2009
Y1 - 2009
N2 - Groupwise registration has been recently introduced for simultaneous registration of a group of images with the goal of constructing an unbiased atlas. To this end, direct application of information-theoretic entropy measures on image intensity has achieved various successes. However, simplistic voxelwise utilization of image intensity often neglects important contextual information, which can be provided by more comprehensive geometric and statistical features. In this paper, we employ attribute vectors, instead of image intensities, to guide groupwise registration. In particular, for each voxel, the attribute vector is computed from its multiple-scale neighborhoods to capture geometric information at different scales. Moreover, the probability density function (PDF) of each attribute in the vector is then estimated from the local neighborhood, providing a statistical summary of the underlying anatomical structure. For the purpose of registration, Jensen-Shannon (JS) divergence is used to measure the PDF dissimilarity of each attribute at corresponding locations of different individual images. By minimizing the overall JS divergence in the whole image space and estimating the deformation field of each image simultaneously, we can eventually register all images and build an unbiased atlas. Experimental results indicate that our method yields better registration quality, compared with a popular groupwise registration method.
AB - Groupwise registration has been recently introduced for simultaneous registration of a group of images with the goal of constructing an unbiased atlas. To this end, direct application of information-theoretic entropy measures on image intensity has achieved various successes. However, simplistic voxelwise utilization of image intensity often neglects important contextual information, which can be provided by more comprehensive geometric and statistical features. In this paper, we employ attribute vectors, instead of image intensities, to guide groupwise registration. In particular, for each voxel, the attribute vector is computed from its multiple-scale neighborhoods to capture geometric information at different scales. Moreover, the probability density function (PDF) of each attribute in the vector is then estimated from the local neighborhood, providing a statistical summary of the underlying anatomical structure. For the purpose of registration, Jensen-Shannon (JS) divergence is used to measure the PDF dissimilarity of each attribute at corresponding locations of different individual images. By minimizing the overall JS divergence in the whole image space and estimating the deformation field of each image simultaneously, we can eventually register all images and build an unbiased atlas. Experimental results indicate that our method yields better registration quality, compared with a popular groupwise registration method.
UR - http://www.scopus.com/inward/record.url?scp=84883838764&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-04268-3_81
DO - 10.1007/978-3-642-04268-3_81
M3 - Conference contribution
C2 - 20426044
AN - SCOPUS:84883838764
SN - 3642042678
SN - 9783642042676
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 656
EP - 663
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2009 - 12th International Conference, Proceedings
T2 - 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009
Y2 - 20 September 2009 through 24 September 2009
ER -