Bacterial and fungal community composition across the soil depth profiles in a fallow field

Daegeun Ko, Gayoung Yoo, Seong Taek Yun, Seong Chun Jun, Haegeun Chung

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, β-1,4-glucosidase, cellobiohydrolase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was 125.9 (± 5.7 (± 1 SE)), 30.9 (± 0.9), 15.7 (± 0.6), 6.7 (± 0.9), and 3.3 (± 0.3) nmol g−1 h−1 at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

Original languageEnglish
Article number34
JournalJournal of Ecology and Environment
Volume41
Issue number1
DOIs
Publication statusPublished - 2017 Sep 19

Keywords

  • Diversity
  • Microbial community composition
  • Pyrosequencing
  • Soil enzymes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology

Fingerprint Dive into the research topics of 'Bacterial and fungal community composition across the soil depth profiles in a fallow field'. Together they form a unique fingerprint.

  • Cite this