Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin

Beom Seok Kim, T. Ashton Cropp, Brian J. Beck, David H. Sherman, Kevin A. Reynolds

Research output: Contribution to journalArticle

90 Citations (Scopus)

Abstract

The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; ATL-ACPL). The pikromycin TEII exhibited high Km values (> 100 μM) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both ATL-ACPL (kcat/Km 3.3 ± 1.1 M-1 S-1) and PikAIII (kcat/Km 2.9 ± 0.9 m-1 S-1). The TEII exhibited some acylgroup specificity, catalyzing hydrolysis of propionyl (kcat/Km 15.8 ± 1.8 M-1 S-1) and butyryl (kcat/Km 17.5 ± 2.1 M-1 S-1) derivatives of ATL-ACPL faster than acetyl (kcat/Km 4.9 ± 0.7 M-1 S-1), malonyl (kcat/Km 3.9 ± 0.5 M-1 s-1, or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of ATL-ACPL at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.

Original languageEnglish
Pages (from-to)48028-48034
Number of pages7
JournalJournal of Biological Chemistry
Volume277
Issue number50
DOIs
Publication statusPublished - 2002 Dec 13
Externally publishedYes

Fingerprint

Acyl Carrier Protein
Polyketides
Biosynthesis
Polyketide Synthases
Substrates
Derivatives
Enzymes
thioesterase II
picromycin
Gene encoding
Cyclization
Enzyme Assays
Streptomyces
Multigene Family
Substrate Specificity
Hydrolysis
Assays
Genes

ASJC Scopus subject areas

  • Biochemistry

Cite this

Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin. / Kim, Beom Seok; Cropp, T. Ashton; Beck, Brian J.; Sherman, David H.; Reynolds, Kevin A.

In: Journal of Biological Chemistry, Vol. 277, No. 50, 13.12.2002, p. 48028-48034.

Research output: Contribution to journalArticle

Kim, Beom Seok ; Cropp, T. Ashton ; Beck, Brian J. ; Sherman, David H. ; Reynolds, Kevin A. / Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin. In: Journal of Biological Chemistry. 2002 ; Vol. 277, No. 50. pp. 48028-48034.
@article{59c275522233467299befe64c983d162,
title = "Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin",
abstract = "The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an {"}editing{"} enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; ATL-ACPL). The pikromycin TEII exhibited high Km values (> 100 μM) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both ATL-ACPL (kcat/Km 3.3 ± 1.1 M-1 S-1) and PikAIII (kcat/Km 2.9 ± 0.9 m-1 S-1). The TEII exhibited some acylgroup specificity, catalyzing hydrolysis of propionyl (kcat/Km 15.8 ± 1.8 M-1 S-1) and butyryl (kcat/Km 17.5 ± 2.1 M-1 S-1) derivatives of ATL-ACPL faster than acetyl (kcat/Km 4.9 ± 0.7 M-1 S-1), malonyl (kcat/Km 3.9 ± 0.5 M-1 s-1, or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of ATL-ACPL at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50{\%}) titer decreases.",
author = "Kim, {Beom Seok} and Cropp, {T. Ashton} and Beck, {Brian J.} and Sherman, {David H.} and Reynolds, {Kevin A.}",
year = "2002",
month = "12",
day = "13",
doi = "10.1074/jbc.M207770200",
language = "English",
volume = "277",
pages = "48028--48034",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "50",

}

TY - JOUR

T1 - Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin

AU - Kim, Beom Seok

AU - Cropp, T. Ashton

AU - Beck, Brian J.

AU - Sherman, David H.

AU - Reynolds, Kevin A.

PY - 2002/12/13

Y1 - 2002/12/13

N2 - The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; ATL-ACPL). The pikromycin TEII exhibited high Km values (> 100 μM) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both ATL-ACPL (kcat/Km 3.3 ± 1.1 M-1 S-1) and PikAIII (kcat/Km 2.9 ± 0.9 m-1 S-1). The TEII exhibited some acylgroup specificity, catalyzing hydrolysis of propionyl (kcat/Km 15.8 ± 1.8 M-1 S-1) and butyryl (kcat/Km 17.5 ± 2.1 M-1 S-1) derivatives of ATL-ACPL faster than acetyl (kcat/Km 4.9 ± 0.7 M-1 S-1), malonyl (kcat/Km 3.9 ± 0.5 M-1 s-1, or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of ATL-ACPL at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.

AB - The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; ATL-ACPL). The pikromycin TEII exhibited high Km values (> 100 μM) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both ATL-ACPL (kcat/Km 3.3 ± 1.1 M-1 S-1) and PikAIII (kcat/Km 2.9 ± 0.9 m-1 S-1). The TEII exhibited some acylgroup specificity, catalyzing hydrolysis of propionyl (kcat/Km 15.8 ± 1.8 M-1 S-1) and butyryl (kcat/Km 17.5 ± 2.1 M-1 S-1) derivatives of ATL-ACPL faster than acetyl (kcat/Km 4.9 ± 0.7 M-1 S-1), malonyl (kcat/Km 3.9 ± 0.5 M-1 s-1, or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of ATL-ACPL at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.

UR - http://www.scopus.com/inward/record.url?scp=0037073685&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037073685&partnerID=8YFLogxK

U2 - 10.1074/jbc.M207770200

DO - 10.1074/jbc.M207770200

M3 - Article

C2 - 12368286

AN - SCOPUS:0037073685

VL - 277

SP - 48028

EP - 48034

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 50

ER -