Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation

Chang Hun Kum, Youngjin Cho, Yoon Ki Joung, Jiyeon Choi, Kwideok Park, Seong Ho Seo, Yong Seek Park, Dong Jun Ahn, Dong Keun Han

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Biodegradable polymers, such as poly(l-lactide) (PLLA), are very useful in many biomedical applications. However, their degradation by-products have been much of a concern as they are the sources of inflammatory reactions in the body. In this work, we suggest a novel composite system composed of PLLA and oligolactide-grafted magnesium hydroxide (Mg-OLA) that can overcome drawbacks caused by poor mechanical properties and inflammatory response of PLLA for biomedical applications. Mg-OLAs were synthesized by ring opening polymerization and the structure, morphology, pH change, thermal, and mechanical properties were analyzed using FTIR, SEM, pH meter, TGA, and UTM. In particular, the tensile strength and modulus of PLLA/Mg80-OLA20 (0-20 wt%) were higher than those of PLLA/magnesium hydroxide. The PLLA/Mg80-OLA20 composite was also very effective in neutralizing the acidic environment caused by the degradable by-product of the PLLA matrix. In vitro cell viability and the expression levels of COX-2 and IL-6 proteins in the PLLA composites were also evaluated. Cell viability increased to around 100% with increasing the amount of Mg80-OLA20 from 0 to 20 wt%. The expression levels of IL-6 and COX-2 were reduced dramatically when increasing the proportion of Mg80-OLA20 from 0 to 50 wt%. As a result, the incorporation of Mg-OLAs into the PLLA matrix could reinforce the mechanical properties as well as reduce the inflammatory response of the hybrid PLLA. Therefore, this hybrid composite system blending oligomer-grafted magnesium hydroxide in biodegradable polymers would be a promising strategy for avoiding current fatal problems in biomedical applications.

Original languageEnglish
Pages (from-to)2764-2772
Number of pages9
JournalJournal of Materials Chemistry B
Volume1
Issue number21
DOIs
Publication statusPublished - 2013 Jun 7

ASJC Scopus subject areas

  • Chemistry(all)
  • Biomedical Engineering
  • Materials Science(all)

Fingerprint Dive into the research topics of 'Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation'. Together they form a unique fingerprint.

  • Cite this