Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics

Jeong Woong Shin, Jong Chan Choe, Joong Hoon Lee, Won Bae Han, Tae Min Jang, Gwan Jin Ko, Seung Min Yang, Yu Gyeong Kim, Jaesun Joo, Bong Hee Lim, Eunkyoung Park, Suk Won Hwang

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


The lifetime of transient electronic components can be programmed via the use of encapsulation/passivation layers or of on-demand, stimuli-responsive polymers (heat, light, or chemicals), but yet most research is limited to slow dissolution rate, hazardous constituents, or byproducts, or complicated synthesis of reactants. Here we present a physicochemical destruction system with dissolvable, nontoxic materials as an efficient, multipurpose platform, where chemically produced bubbles rapidly collapse device structures and acidic molecules accelerate dissolution of functional traces. Extensive studies of composites based on biodegradable polymers (gelatin and poly(lactic-co-glycolic acid)) and harmless blowing agents (organic acid and bicarbonate salt) validate the capability for the desired system. Integration with wearable/recyclable electronic components, fast-degradable device layouts, and wireless microfluidic devices highlights potential applicability toward versatile/multifunctional transient systems. In vivo toxicity tests demonstrate biological safety of the proposed system.

Original languageEnglish
Pages (from-to)19310-19320
Number of pages11
JournalACS nano
Issue number12
Publication statusPublished - 2021 Dec 28


  • biodegradable
  • biosafe
  • self-destruction
  • transient electronics
  • triggering

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics'. Together they form a unique fingerprint.

Cite this