Abstract
In brain, the serine protease tissue plasminogen activator (tPA) and its endogenous inhibitor plasminogen activator inhibitor-1 (PAI-1) have been implicated in the regulation of various neurophysiological and pathological responses. In this study, we investigated the differential role of neurons and astrocytes in the regulation of tPA/PAI-1 activity in ischemic brain. The activity of tPA peaked transiently and then decreased in cortex and striatum along with delayed induction of PAI-1 in the inflammatory stage after MCAO/reperfusion injury. In cultured primary cells, glutamate stimulation increased tPA activity in neurons but not in other cells such as microglia and astrocytes. With LPS stimulation, a model of neuroinflammatory insults, robust PAI-1 induction was observed in astrocytes but not in neurons and microglia. The upregulation of PAI-1 by LPS in astrocytes was also verified by RT-PCR analysis as well as PAI-1 promoter reporter assay. Lastly, we checked the effects of hypoxia on tPA/PAI-1 activity. Hypoxia increased tPA release from neurons without effects on microglia, while the activity of tPA in astrocyte was decreased consistent with increased PAI-1 activity in astrocyte. Taken together, the results from the present study suggest that neurons are the major source of tPA and that the glutamate-induced stimulated release is mainly governed by neurons in the acute phase. In contrast, the massive up-regulation of PAI-1 in astrocytes during subchronic and chronic inflammatory conditions, leads to decreased tPA activity in the later stages of MCAO. Differential regulation of tPA and PAI-1 in neurons, astrocytes and microglia suggest more attention is required to understand the role of local tPA activity in the vicinity of individual cell types.
Original language | English |
---|---|
Pages (from-to) | 423-433 |
Number of pages | 11 |
Journal | Neurochemistry International |
Volume | 58 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2011 Feb |
Keywords
- Astrocytes
- Biphasic
- LPS
- MCAO
- PAI-1
- tPA
ASJC Scopus subject areas
- Cellular and Molecular Neuroscience
- Cell Biology