Bond Behavior of Concrete-Filled Steel Tube Mega Columns with Different Connectors

Robel Wondimu Alemayehu, Jaehoon Bae, Young K. Ju, Min Jae Park

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Concrete-filled steel tubes (CFSTs) are widely used in construction. To achieve composite action and take full advantage of the two materials, strain continuity at the steel–concrete interface is essential. When the concrete core and steel tube are not loaded simultaneously in regions such as beam or brace connections to the steel tubes of a CFST column, the steel–concrete bond plays a crucial role in load transfer. This study uses a validated finite-element model to investigate the bond-slip behavior between the steel tube and concrete in square CFST mega columns through a push-out analysis of eleven 1.2-× 1.2-m mega columns. The bond-slip behavior of CFST mega columns with and without mechanical connectors, including shear studs, rib plates, and connecting plates, is studied. The finite-element results indicate that the mechanical connectors substantially increased the maximum bond stress. Among the analyzed CFST mega columns, those with closely spaced shear studs and rib plate connectors with circular holes exhibited the highest bond stress, followed by plate connectors and widely spaced shear stud connectors. In the case of shear stud connectors, the stud diameter and spacing influenced the bond behavior more than the stud length. As the stud spacing decreased, the failure mode shifted from studs shearing off to outward buckling of the steel tube.

Original languageEnglish
Article number2791
JournalMaterials
Volume15
Issue number8
DOIs
Publication statusPublished - 2022 Apr 1

Keywords

  • concrete-filled steel tube (CFST)
  • connectors
  • finite-element method
  • mega column
  • push out
  • rib plate
  • shear studs

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Bond Behavior of Concrete-Filled Steel Tube Mega Columns with Different Connectors'. Together they form a unique fingerprint.

Cite this