Butyrate production in engineered Escherichia coli with synthetic scaffolds

Jang Mi Baek, Suman Mazumdar, Sang Woo Lee, Moo Young Jung, Jae Hyung Lim, Sang Woo Seo, Gyoo Yeol Jung, Min Kyu Oh

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)


Butyrate pathway was constructed in recombinant Escherichia coli using the genes from Clostridium acetobutylicum and Treponema denticola. However, the pathway constructed from exogenous enzymes did not efficiently convert carbon flux to butyrate. Three steps of the productivity enhancement were attempted in this study. First, pathway engineering to delete metabolic pathways to by-products successfully improved the butyrate production. Second, synthetic scaffold protein that spatially co-localizes enzymes was introduced to improve the efficiency of the heterologous pathway enzymes, resulting in threefold improvement in butyrate production. Finally, further optimizations of inducer concentrations and pH adjustment were tried. The final titer of butyrate was 4.3 and 7.2g/L under batch and fed-batch cultivation, respectively. This study demonstrated the importance of synthetic scaffold protein as a useful tool for optimization of heterologous butyrate pathway in E. coli.

Original languageEnglish
Pages (from-to)2790-2794
Number of pages5
JournalBiotechnology and Bioengineering
Issue number10
Publication statusPublished - 2013 Oct


  • Butyrate
  • Escherichia coli
  • Heterologous pathway
  • Metabolic engineering
  • Synthetic scaffold

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology


Dive into the research topics of 'Butyrate production in engineered Escherichia coli with synthetic scaffolds'. Together they form a unique fingerprint.

Cite this