Abstract
We have studied the conduction characteristics of multiwalled carbon nanotubes (MWNTs), which were screen printed in a thick film form for field-emission displays. Resistivity and magnetoresistance were measured as a function of temperature T in the range of 1.7-390 K and magnetic field, respectively. The resistivity of the MWNTs for temperatures of 10-390 K indicates that the system is intrinsically metallic and the resistivity-temperature characteristics are well described by the Mott's T-1/4 law in temperatures above 10 K, suggesting that the density of states at the Fermi level is constant in the range of 10-100 K. We found that the main contribution to the conductivity comes from carriers that hop directly between localized states via variable-range hopping. The temperature dependence above 10 K is in good agreement with that of an individual multiwalled carbon nanotube. However, below 10 K the resistivity is well fit to Efros T-1/2 law, confirming the presence of a Coulomb gap for the system. With the decrease of temperature below 10 K the charge carriers in the system are localized by strong disorder, bringing a nearly insulating state. The thick-film form for large-area display resulted in a highly bright light as well as a very low turn-on field just like individual multiwalled nanotubes at room temperature. Also, the electron field-emission characteristics followed typical Fowler-Nordheim conduction under high electric field.
Original language | English |
---|---|
Pages (from-to) | 4181-4185 |
Number of pages | 5 |
Journal | Journal of Applied Physics |
Volume | 88 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2000 Oct |
ASJC Scopus subject areas
- Physics and Astronomy(all)