Characteristics and electrochemical performance of the LiMn<inf>2</inf>O<inf>4</inf> with TiO<inf>2</inf> surface layer in lithium secondary batteries

Cheon Soo Kim, Keon Kim, Cheol Woo Yi

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

To reduce high dissolution of manganese ions (Mn<sup>3+</sup>) into the electrolytes in lithium-ion batteries, causing severe capacity loss during storage and cycle, TiO<inf>2</inf> is simply coated onto LiMn<inf>2</inf>O<inf>4</inf> powders by the sol-gel method and investigated by various analytical techniques. Whereas the surface layer of TiO<inf>2</inf> on LiMn<inf>2</inf>O<inf>4</inf> powders is stable up to 600 °C, annealing at and above 700 °C induces the reaction of TiO<inf>2</inf> surface layer with LiMn<inf>2</inf>O<inf>4</inf> host particle. The passive TiO<inf>2</inf> layer on LiMn<inf>2</inf>O<inf>4</inf> annealed at 500 °C effectively suppress Mn dissolution at room temperature and even higher temperature (55 °C). Moreover, TiO<inf>2</inf>-coated LiMn<inf>2</inf>O<inf>4</inf> annealed at 500 °C improves the cycle property at high voltage of 4.50 V charging and even at high temperature. Hence, TiO<inf>2</inf>-coated LiMn<inf>2</inf>O<inf>4</inf> can be a promising candidate of cathode active material for lithium-ion batteries.

Original languageEnglish
Pages (from-to)232-236
Number of pages5
JournalJournal of Ceramic Processing Research
Volume16
Issue number2
Publication statusPublished - 2015

Keywords

  • LiMn<inf>2</inf>O<inf>4</inf>
  • Mn dissolution
  • Surface modification
  • TiO<inf>2</inf>

ASJC Scopus subject areas

  • Ceramics and Composites

Fingerprint Dive into the research topics of 'Characteristics and electrochemical performance of the LiMn<inf>2</inf>O<inf>4</inf> with TiO<inf>2</inf> surface layer in lithium secondary batteries'. Together they form a unique fingerprint.

Cite this