Abstract
To reduce high dissolution of manganese ions (Mn<sup>3+</sup>) into the electrolytes in lithium-ion batteries, causing severe capacity loss during storage and cycle, TiO<inf>2</inf> is simply coated onto LiMn<inf>2</inf>O<inf>4</inf> powders by the sol-gel method and investigated by various analytical techniques. Whereas the surface layer of TiO<inf>2</inf> on LiMn<inf>2</inf>O<inf>4</inf> powders is stable up to 600 °C, annealing at and above 700 °C induces the reaction of TiO<inf>2</inf> surface layer with LiMn<inf>2</inf>O<inf>4</inf> host particle. The passive TiO<inf>2</inf> layer on LiMn<inf>2</inf>O<inf>4</inf> annealed at 500 °C effectively suppress Mn dissolution at room temperature and even higher temperature (55 °C). Moreover, TiO<inf>2</inf>-coated LiMn<inf>2</inf>O<inf>4</inf> annealed at 500 °C improves the cycle property at high voltage of 4.50 V charging and even at high temperature. Hence, TiO<inf>2</inf>-coated LiMn<inf>2</inf>O<inf>4</inf> can be a promising candidate of cathode active material for lithium-ion batteries.
Original language | English |
---|---|
Pages (from-to) | 232-236 |
Number of pages | 5 |
Journal | Journal of Ceramic Processing Research |
Volume | 16 |
Issue number | 2 |
Publication status | Published - 2015 |
Keywords
- LiMn<inf>2</inf>O<inf>4</inf>
- Mn dissolution
- Surface modification
- TiO<inf>2</inf>
ASJC Scopus subject areas
- Ceramics and Composites