Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF- β 1 in Airway Epithelium via the c-Src Pathway

Heung Man Lee, Ju Hyung Kang, Jae Min Shin, Seoung Ae Lee, Il Ho Park

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS.

Original languageEnglish
Article number8123281
JournalMediators of Inflammation
Volume2017
DOIs
Publication statusPublished - 2017

Fingerprint

Endoplasmic Reticulum Stress
Epithelial-Mesenchymal Transition
Turbinates
Epithelium
Nose
Organ Culture Techniques
Epithelial Cells
Vimentin
Cadherins
Fibronectins
Biological Phenomena
Nasal Polyps
Acids
Chronic Disease
Cell Culture Techniques
Phenotype
A549 Cells

ASJC Scopus subject areas

  • Immunology
  • Cell Biology

Cite this

@article{1b7021081b68486f8181fefbb92e932d,
title = "Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF- β 1 in Airway Epithelium via the c-Src Pathway",
abstract = "Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS.",
author = "Lee, {Heung Man} and Kang, {Ju Hyung} and Shin, {Jae Min} and Lee, {Seoung Ae} and Park, {Il Ho}",
year = "2017",
doi = "10.1155/2017/8123281",
language = "English",
volume = "2017",
journal = "Mediators of Inflammation",
issn = "0962-9351",
publisher = "Hindawi Publishing Corporation",

}

TY - JOUR

T1 - Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF- β 1 in Airway Epithelium via the c-Src Pathway

AU - Lee, Heung Man

AU - Kang, Ju Hyung

AU - Shin, Jae Min

AU - Lee, Seoung Ae

AU - Park, Il Ho

PY - 2017

Y1 - 2017

N2 - Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS.

AB - Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-β1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-β1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-β1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-β1 on migration of A549 cells and suppressed TGF-β1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-β1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-β1 in upper airway chronic inflammatory disease such as CRS.

UR - http://www.scopus.com/inward/record.url?scp=85027148839&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027148839&partnerID=8YFLogxK

U2 - 10.1155/2017/8123281

DO - 10.1155/2017/8123281

M3 - Article

VL - 2017

JO - Mediators of Inflammation

JF - Mediators of Inflammation

SN - 0962-9351

M1 - 8123281

ER -