Circadian waves of cytosolic calcium concentration and long-range network connections in rat suprachiasmatic nucleus

Jin Hee Hong, Byeongha Jeong, Cheol Hong Min, Kyoung Jin Lee

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

The suprachiasmatic nucleus (SCN) is the master clock in mammals governing the daily physiological and behavioral rhythms. It is composed of thousands of clock cells with their own intrinsic periods varying over a wide range (20-28h). Despite this heterogeneity, an intact SCN maintains a coherent 24h periodic rhythm through some cell-to-cell coupling mechanisms. This study examined how the clock cells are connected to each other and how their phases are organized in space by monitoring the cytosolic free calcium ion concentration ([Ca 2+] c) of clock cells using the calcium-binding fluorescent protein, cameleon. Extensive analysis of 18 different organotypic slice cultures of the SCN showed that the SCN calcium dynamics is coordinated by phase-synchronizing networks of long-range neurites as well as by diffusively propagating phase waves. The networks appear quite extensive and far-reaching, and the clock cells connected by them exhibit heterogeneous responses in their amplitudes and periods of oscillation to tetrodotoxin treatments. Taken together, our study suggests that the network of long-range cellular connectivity has an important role for the SCN in achieving its phase and period coherence.

Original languageEnglish
Pages (from-to)1417-1425
Number of pages9
JournalEuropean Journal of Neuroscience
Volume35
Issue number9
DOIs
Publication statusPublished - 2012 May 1

    Fingerprint

Keywords

  • Circadian oscillation
  • Clock cell networks
  • Phase waves and synchronization
  • Suprachiasmatic nucleus calcium dynamics

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this