TY - JOUR

T1 - Classical matrix sine-Gordon theory

AU - Park, Q. Han

AU - Shin, H. J.

N1 - Funding Information:
We would like to thankT . Hollowoodfo r discussionT.h is work was supporteidn part by ResearchF und of KyungheeU niversityb, y the programo f Basic ScienceR esearch, Ministry of EducationB SRI-95, and by Korea Science and EngineeringF oundation throughC TP/SNU and the Korea-JapanC ooperativSec ienceP rogram.

PY - 1996/1/1

Y1 - 1996/1/1

N2 - The matrix sine-Gordon theory, a matrix generalization of the well-known sine-Gordon theory, is studied. In particular, the A3 generalization where fields take values in SU(2) describes integrable deformations of conformal field theory corresponding to the coset SU(2) × SU(2)/SU(2). Various classical aspects of the matrix sine-Gordon theory are addressed. We find exact solutions, solitons and breathers which generalize those of the sine-Gordon theory with internal degrees of freedom, by applying the Zakharov-Shabat dressing method and explaining their physical properties. Infinite current conservation laws and then Bäcklund transformation of the theory are obtained from the zero curvature formalism of the equation of motion. From the Bäcklund transformation, we also derive exact solutions as well as a nonlinear superposition principle by making use of Bianchi's permutability theorem.

AB - The matrix sine-Gordon theory, a matrix generalization of the well-known sine-Gordon theory, is studied. In particular, the A3 generalization where fields take values in SU(2) describes integrable deformations of conformal field theory corresponding to the coset SU(2) × SU(2)/SU(2). Various classical aspects of the matrix sine-Gordon theory are addressed. We find exact solutions, solitons and breathers which generalize those of the sine-Gordon theory with internal degrees of freedom, by applying the Zakharov-Shabat dressing method and explaining their physical properties. Infinite current conservation laws and then Bäcklund transformation of the theory are obtained from the zero curvature formalism of the equation of motion. From the Bäcklund transformation, we also derive exact solutions as well as a nonlinear superposition principle by making use of Bianchi's permutability theorem.

UR - http://www.scopus.com/inward/record.url?scp=0029689356&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029689356&partnerID=8YFLogxK

U2 - 10.1016/0550-3213(95)00539-0

DO - 10.1016/0550-3213(95)00539-0

M3 - Article

AN - SCOPUS:0029689356

VL - 458

SP - 327

EP - 354

JO - Nuclear Physics B

JF - Nuclear Physics B

SN - 0550-3213

IS - 1-2

ER -